7件事,让你快速提升数据分析能力

全文共3275字,预计学习时长6分钟node

用一张美图吸引你!程序员

想让本身的数据分析能力更上一层楼吗?本文能够帮助你造成一个“每日加速提高数据分析能力清单”。shell

#1: Pandas Profiling微信

这一工具的优势显而易见。如下动画是使用df.profile_report()这一简单方法的结果。请自行观当作果展现;markdown

使用此工具只需安装和导入Pandas Profiling程序包便可。函数

#2: 使用Cufflinks和Plotly绘制Panda数据工具

大多所谓的“经验丰富的”数据科学家或数据分析师都对matplotlib和 pandas的协同很是熟悉。也就是说,他们能够经过使用.plot()函数快速绘制pd.DataFrame或pd.Series图像。学习

有点无聊是吧?测试

如今就行了。如何作一个交互型全景式可缩放的图像呢?Cufflinks 能够作到!(由 Plotly提供)动画

在系统中安装Cufflinks便可! 快速安装Cufflinks ——在本身最喜欢的终端进行更新便可。能够观看如下动画:

好多了!

注意,惟一会改变以上结果的是对Cufflinks输入并设置cf.go_offline() 函数。其他的只是把.plot()改为.iplot()。

其余像.scatter_matrix()这样的函数会带来不错的可视化图像:

酷毙了!

但愿从事大量数据可视化工做的朋友都看一看有关的Cufflinks和Plotly内容,从中能够找到大量方法!

#3: IPython Magic Commands

IPython 的Magics本质上就是IPython堆叠在Python语法顶端的一系列增强功能。Magic commands有两种:其一为line magics,用%做为前缀表示,在一行输入的代码上运行;而 cell magics用%%做为前缀表示,在多行输入的代码上运行。如下是Magics的一些实用函数:

%lsmagic: 应有尽有。

不妨先尝试一些传统却好用的方法。若是只记得一条Magic Command,估计就是它了。执行%lsmagic将会出现全部可用的Magic Commands列表:

%debug: 交互程序调试

这估计是Magic Command使用频次最高的了。

大多人都试过:程序员执行一个代码块,而这个代码块一直出错。绝望中的程序员为了输出每一变量的内容,写下20 print()一类代码。而后当程序员终于修复了问题时,就不得不回过头删除全部列出的函数。

然而如今不用了!只需在遇到问题的时候执行%debug,就能够执行任意一部分代码了:

那么,总结一下以上内容:

1. 有一个函数,它将一个列表做为输入,并平方全部偶数。

2. 运行函数,某处出现错误。但没法找到错误。

3. 出错时把%debug命令标记到函数中。

4. 让调试程序显示x以及type(x)的值。

5. 由此找到了错误:6被看成了一行字符串!

能够想象,这一命令对更多更复杂的函数都大有用处!

%store: 在notebooks间互传变量

这个命令也很棒。首先说一提及因。程序员花时间清理了notebook中的一些数据,如今要测试另外一notebook中的一些函数,所以既须要在同一notebook中实现函数功能,又要将其放到另外一notebook中。用%store只要存储变量,并在任一notebook中检索便可:

%store [variable]存储变量。

%store -r [variable]阅读/检索已存储的变量。

%who: 罗列全部变量。

是否曾将某个值赋到一个变量上但忘了变量名称?是否不当心删除了赋值给变量的单元格?有了%who,就能够得到全部已赋值的变量:

%%time: 魔法定时。

有了这个命令,就能够得到一切所需的定时信息。只要将%%time应用到任何一段可执行的代码中,就能够得到以下输出:

24微秒。马马虎虎吧。

%%writefile: 将单元格内容编辑到文档。

这是本文的最后一个命令。当已经在notebook中写了一些复杂的函数或其类别,而想要将其从notebook中分离存到文件中去时,这个命令很是有用。只需为函数或其类别添加前置%%writefile,而后添加文件名储存便可:

如图所示,能够直接将建立的函数储存到 “utils.py” 文件夹中,以任意形式导入函数便可。在其余notebook中也是这样!(只要都在utils.py文件夹的同一个目录中)

#4: Jupyter中的绚丽格式

这个很是棒!基本上,Jupyter容许在markdown单元格中设置一些HTML / CSS格式。这是一些经常使用的:

忧郁而时髦的:

<div class="alert alert-block alert-info">

This is <b>fancy</b>!

</div>

热血而稍显痛苦的:

<div class="alert alert-block alert-danger">

This is <b>baaaaad</b>!

</div>

青涩而平静的:

<div class="alert alert-block alert-success">

This is <b>gooood</b>!

</div>

此处为操做动画:

当要以notebook形式展现成果时,这些命令很是有用!

#5: Jupyter的快捷键

学习了键盘快捷键后,可使用命令面板:Ctrl + Shift + P。这一操做能够直接唤起notebook中的函数列表。如下为部分基础命令:

Esc: 使用这一快捷键可直接切换到命令模式。这也是用方向键在notebook中导航的方式。

处于命令模式时:

• A和B:键入新单元格,上移([A]bove)或下移([B]elow)现有单元格。

• M: 将现有单元格markdown( [M]arkdown)。

• Y: 将现有单元格改成代码。

• D,D:确认删除 ([D]efinetly [D]eletes)现有单元格。

Enter: 对现有单元格进行返回编辑模式的操做。

处于编辑模式时:

• Shift + Tab:给键入现有单元格的目标显示Docstring (文档字符串) —— 长按快捷键切换文档模式。

• Ctrl + Shift + -:将现有单元格从光标停留处分离。

• Esc + F:查找替换不含输出的代码。

• Esc + O:切换单元格输出。

选择多个单元格:

• Shift + Down和Shift + Up: 向下或向上选择下一个单元格。我的认为可使用演绎法进行判别。

• Shift + M: 合并选中的单元格。

• 请注意,一旦单元格被选中,则能够批量删除/复制/粘贴/运行。

#6: Jupyter (或IPython)每一单元格的多种输出

这个也不错。是否曾经想显示pandas数据帧(DataFrame)的the .head()和 the .tail()?可是却半途而废,由于要建立一个额外的代码单元格去运行.tail() ,这太麻烦了。别再惧怕了,如今使用下列代码能够显示全部想要的输出:

from IPython.core.interactiveshell import InteractiveShell

InteractiveShell.ast_node_interactivity = "all"

看,多个输出的实力在此:

小菜一碟

#7:不断扩充本身的Jupyter notebook

使用 RISE,就能够将Jupyter Notebook陆续转化为幻灯片形式。最棒的是,notebook还是可用的,因此能够实现文稿演示的同时实时编码!

根据我的系统环境,经过conda或者pip均可以安装 RISE以使用该工具:

conda install -c conda-forge rise

/// OR ///

pip install RISE

如今就能够点击新按钮从notebook中建立完美的演示文稿了:

留言 点赞 关注

咱们一块儿分享AI学习与发展的干货
欢迎关注全平台AI垂类自媒体 “读芯术”


(添加小编微信:dxsxbb,加入读者圈,一块儿讨论最新鲜的人工智能科技哦~)

相关文章
相关标签/搜索