对于多线程的使用,通常对于起多少个线程数目,对于这点我通常会考虑CPU核心数,消耗的资源以及是不是瓶颈html
下面我用一个示例大体解释下个人思路java
public class Demo { BlockingQueue<String> urlQueue = new ArrayBlockingQueue<String>(1024); BlockingQueue<Html> htmlQueue = new ArrayBlockingQueue<Html>(1024); BlockingQueue<Meta> metaQueue = new ArrayBlockingQueue<Meta>(1024); public void execute() throws InterruptedException { new Thread(new QueryThread()).start(); Thread[] spiders = new Thread[5]; for (int x = 0; x < spiders.length; x++) { spiders[x] = new Thread(new SpiderThread()); spiders[x].start(); } Thread[] parsers = new Thread[5]; for (int x = 0; x < parsers.length; x++) { parsers[x] = new Thread(new ParserThread()); parsers[x].start(); } Thread[] writers = new Thread[3]; for (int x = 0; x < writers.length; x++) { writers[x] = new Thread(new WriteThread()); writers[x].start(); } //等待Spider线程结束 for (int x = 0; x < spiders.length; x++) { spiders[x].join(); } //往htmlQueue通信队列中放入结束信号 putEmptySingeleToHtmlQueue(); //等待Parser线程结束 for (int x = 0; x < parsers.length; x++) { parsers[x].join(); } //往metaQueue通信队列中放入结束信号 putEmptySingeleToMetaQueue(); //等待Writer线程结束 for (int x = 0; x < writers.length; x++) { writers[x].join(); } //Writer线程所有结束,程序结束 } private void putEmptySingeleToMetaQueue() throws InterruptedException { Meta meta = new Meta(); meta.setEmpty(true); metaQueue.put(meta); } private void putEmptySingeleToHtmlQueue() throws InterruptedException { Html empty = new Html(); empty.setEmpty(true); htmlQueue.put(empty); } class QueryThread implements Runnable{ @Override public void run() { try { String url = null; while ((url = getUrl()) != null) { if (url.length() == 0) { continue; } urlQueue.put(url); } urlQueue.put(""); } catch (InterruptedException e) { e.printStackTrace(); } } private String getUrl() { return null; } } class SpiderThread implements Runnable { @Override public void run() { try { while (true) { String url = urlQueue.take(); if (url.length() == 0) { //get empty single put back and stop thread //then the other thread can get the empty single urlQueue.put(url); break; } Html html = crawl(url); if (html == null) { // deal fail continue; } htmlQueue.put(html); } } catch (InterruptedException e) { e.printStackTrace(); } } private Html crawl(String url) { return null; } } class ParserThread implements Runnable { @Override public void run() { try { while (true) { Html take = htmlQueue.take(); if (take.isEmpty()) { htmlQueue.put(take); break; } Meta meta = translate(take); metaQueue.put(meta); } } catch (InterruptedException e) { e.printStackTrace(); } } private Meta translate(Html take) { //parse data return null; } } class WriteThread implements Runnable { @Override public void run() { try { while (true) { Meta take = metaQueue.take(); if (take.isEmpty()) { metaQueue.put(take); break; } write(take); } } catch (InterruptedException e) { e.printStackTrace(); } } private void write(Meta take) { // write data } } class Html { private boolean empty; public boolean isEmpty() { return empty; } public void setEmpty(boolean empty) { this.empty = empty; } } class Meta { private boolean empty; public boolean isEmpty() { return empty; } public void setEmpty(boolean empty) { this.empty = empty; } } }
这是一个简单的爬取和解析的简单爬虫,其中主要分:一、取数据,二、爬取数据,三、解析数据,四、写数据到硬盘网络
首先我会分析各部分所耗资源的点多线程
一、取数据:消耗资源的是磁盘,占用读取速度,这里不会是瓶颈。ide
二、爬取数据:消耗的资源是网络资源,相对于1来讲是很大的瓶颈,因此1只用起一个线程足矣。而这部分该起多少线程,固然是越多越好,可是还要考虑爬取站点的通畅性,适可的增长。this
三、解析数据:消耗的是CPU资源,哪这里我就会考虑CPU的核心数,通常来讲会起和CPU核心数相同的线程数。假如咱们多起两个线程,咱们能够想一想,若是线程数比CPU核心数多,必然会出现两个解析线程争抢一个CPU核心的资源。而这部分又是消耗CPU资源的,从而致使解析这块一定有线程处于阻塞状态,导致下降效率,因此在消耗CPU这块尽可能保证线程数超过CPU核心数目。url
四、写数据到硬盘:消耗的资源是硬盘,占用写速度,这里视爬取那块而定。但通常不会起太多线程,由于写入速度也是一个瓶颈,起太多不会对效率提升有多大影响。spa