https://github.com/ljshLLW/homeworkgit
给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n
例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。
-- 引用自《百度百科》github
从数组一个值开始累加,并记录下最大值,当前和。若是当前和小于0则置0,由于加上一个小于0确定变小,当前和不小于等于0的话,全部数加上当前和都会变大。数组
func = lambda x: x>0 and x or 0 def MaxSubArray(array): maxSum = 0 thisSum = 0 for i in range(len(array)): thisSum = func(thisSum+array[i]) maxSum = max(thisSum,maxSum) return maxSum
采用条件组合覆盖测试
len(array)<0 AH 符合条件为[]
len(array)>0 AB...BHthisCDFI array[i]为负数 thisSum为正加一个大于thisSum绝对值的负数 例如[1,2,-1]
CDFGI array[i]为正数 thisSum为任意值加一个正数以后小于max 例如[1,2,3]
CEFI array[i]为负数 thisSum为任意值加一个比thisSum的相反数小的数 例如[-1,-2,-3]
CEFGI 永不成立
符合上述条件可总结为一个数组[7,-4,-6]
[7,]知足CDFGI
[7,-4]知足CDFI
[7,-4,-6]知足CEFIspa
import unittest from MaxSubarray import MaxSubArray class TestMaxSubArrayFunc(unittest.TestCase): def test_Empty(self): self.assertEqual(0,MaxSubArray([])) def test_AB_BH(self): self.assertEqual(7,MaxSubArray([7,-4,-6])) if __name__ == '__main__': unittest.main(verbosity=2)
多加练习3d