Redis初识01 (简介、安装、使用)

1、Reids介绍

  redis是一个key-value存储系统。和Memcached相似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操做,并且这些操做都是原子性的。在此基础上,redis支持各类不一样方式的排序。与memcached同样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操做写入追加的记录文件,而且在此基础上实现了master-slave(主从)同步linux

1. 使用Redis有哪些好处?

(1) 速度快,由于数据存在内存中,相似于HashMap,HashMap的优点就是查找和操做的时间复杂度都是O(1)git

(2) 支持丰富数据类型,支持string,list,set,sorted,hashgithub

5大数据类型
  k1:'123', 字符串
  k2:[1,2,3,4], 列表/数组
  k3:{1,2,3,4} 集合:去重,爬虫去重
  k4:{name:lqz,age:12} 字典/哈希表
  k5:{('lqz',18),('egon',33)} 有序集合:游戏排行榜redis

(3) 支持事务,操做都是原子性,所谓的原子性就是对数据的更改要么所有执行,要么所有不执行数据库

(4) 丰富的特性:可用于缓存,消息,按key设置过时时间,过时后将会自动删除django

2. redis相比memcached有哪些优点?

(1) memcached全部的值均是简单的字符串,redis做为其替代者,支持更为丰富的数据类型windows

(2) redis的速度比memcached快不少后端

(3) redis能够持久化其数据数组

3. Memcache与Redis的区别都有哪些?

(1) 、存储方式缓存

Memecache把数据所有存在内存之中,断电后会挂掉,数据不能超过内存大小。

Redis有部份存在硬盘上,这样能保证数据的持久性。

(2) 、数据支持类型

Memcache对数据类型支持相对简单。

Redis有复杂的数据类型。

(3) ,value大小

redis最大能够达到1GB,而memcache只有1MB

其它:

(1) Master最好不要作任何持久化工做,如RDB内存快照和AOF日志文件

(2) 若是数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次

(3) 为了主从复制的速度和链接的稳定性,Master和Slave最好在同一个局域网内

(4) 尽可能避免在压力很大的主库上增长从库

(5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...

这样的结构方便解决单点故障问题,实现Slave对Master的替换。若是Master挂了,能够马上启用Slave1作Master,其余不变。
4. redis常见性能问题和解决方案:
1).Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工做,当快照比较大时对性能影响是很是大的,会间断性暂停服务,因此Master最好不要写内存快照。


2).Master AOF持久化,若是不重写AOF文件,这个持久化方式对性能的影响是最小的,可是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要作任何持久化工做,包括内存快照和AOF日志文件,特别是不要启用内存快照作持久化,若是数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。

 
3).Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,致使服务load太高,出现短暂服务暂停现象。

4). Redis主从复制的性能问题,为了主从复制的速度和链接的稳定性,Slave和Master最好在同一个局域网内
5. Redis 常见的性能问题都有哪些?如何解决?
Redis最适合全部数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差异,那么可能你们就会有疑问,彷佛Redis更像一个增强版的Memcached,那么什么时候使用Memcached,什么时候使用Redis呢?

       若是简单地比较Redis与Memcached的区别,大多数都会获得如下观点:

     1 、Redis不只仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
     2 、Redis支持数据的备份,即master-slave模式的数据备份。
     3 、Redis支持数据的持久化,能够将内存中的数据保持在磁盘中,重启的时候能够再次加载进行使用。

(1)、会话缓存(Session Cache)

最经常使用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其余存储(如Memcached)的优点在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,若是用户的购物车信息所有丢失,大部分人都会不高兴的,如今,他们还会这样吗?

幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。

(2)、全页缓存(FPC)

除基本的会话token以外,Redis还提供很简便的FPC平台。回到一致性问题,即便重启了Redis实例,由于有磁盘的持久化,用户也不会看到页面加载速度的降低,这是一个极大改进,相似PHP本地FPC。

再次以Magento为例,Magento提供一个插件来使用Redis做为全页缓存后端。

此外,对WordPress的用户来讲,Pantheon有一个很是好的插件  wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。

(3)、队列

Reids在内存存储引擎领域的一大优势是提供 list 和 set 操做,这使得Redis能做为一个很好的消息队列平台来使用。Redis做为队列使用的操做,就相似于本地程序语言(如Python)对 list 的 push/pop 操做。

若是你快速的在Google中搜索“Redis queues”,你立刻就能找到大量的开源项目,这些项目的目的就是利用Redis建立很是好的后端工具,以知足各类队列需求。例如,Celery有一个后台就是使用Redis做为broker,你能够从这里去查看。

(4),排行榜/计数器

Redis在内存中对数字进行递增或递减的操做实现的很是好。集合(Set)和有序集合(Sorted Set)也使得咱们在执行这些操做的时候变的很是简单,Redis只是正好提供了这两种数据结构。因此,咱们要从排序集合中获取到排名最靠前的10个用户–咱们称之为“user_scores”,咱们只须要像下面同样执行便可:

固然,这是假定你是根据你用户的分数作递增的排序。若是你想返回用户及用户的分数,你须要这样执行:

ZRANGE user_scores 0 10 WITHSCORES

Agora Games就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你能够在这里看到。

(5)、发布/订阅

最后(但确定不是最不重要的)是Redis的发布/订阅功能。发布/订阅的使用场景确实很是多。我已看见人们在社交网络链接中使用,还可做为基于发布/订阅的脚本触发器,甚至用Redis的发布/订阅功能来创建聊天系统!(不,这是真的,你能够去核实)。

Redis提供的全部特性中,我感受这个是喜欢的人最少的一个,虽然它为用户提供若是此多功能。
6. redis 最适合的场景
 相关知识:redis 内存数据集大小上升到必定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略:

voltile-lru:从已设置过时时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰

volatile-ttl:从已设置过时时间的数据集(server.db[i].expires)中挑选将要过时的数据淘汰

volatile-random:从已设置过时时间的数据集(server.db[i].expires)中任意选择数据淘汰

allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰

allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰

no-enviction(驱逐):禁止驱逐数据
7. MySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据

支持的数据类型(5大数据类型):string、list、 set、 zset、 hash

redis={
        k1:'123',       字符串
        k2:[1,2,3,4],   列表/数组
        k3:{1,2,3,4}    集合
        k4:{name:lqz,age:12}         字典/哈希表
        k5:{('lqz',18),('egon',33)}  有序集合
}

特色:

能够持久化

单线程,单进程

2、Redis安装和使用

Windows下安装

①下载安装包:

获取安装包。Windows的Redis安装包须要到如下GitHub连接找到。连接:https://github.com/MSOpenTech/redis。打开网站后,找到Release,点击前往下载页面。

 ②安装

一路点击下一步,该默认就默认不变就ok。

 安装完毕后,须要先作一些设定工做,以便服务启动后能正常运行。使用文本编辑器,这里使用Notepad++,打开Redis服务配置文件。注意:不要找错了,一般为redis.windows-service.conf,而不是redis.windows.conf。后者是以非系统服务方式启动程序使用的配置文件。

 

找到含有requirepass字样的地方,追加一行,输入requirepass 12345。这是访问Redis时所需的密码,通常测试状况下能够不用设定密码。不过,即便是做为本地访问,也建议设定一个密码。此处以简单的12345来演示。(记住要保存一下)

 

点击“开始”>右击“计算机”>选择“管理”。在左侧栏中依次找到并点击“计算机管理(本地)”>服务和应用程序>服务。再在右侧找到Redis名称的服务,查看启动状况。如未启动,则手动启动之。正常状况下,服务应该正常启动并运行了。

最后来测试一下Redis是否正常提供服务。进入Redis的目录,cd C:\Program Files\Redis。输入redis-cli并回车。(redis-cli是客户端程序)如图正常提示进入,并显示正确端口号,则表示服务已经启动。

 

使用服务前须要先经过密码验证。输入“auth 12345”并回车(12345是以前设定的密码)。返回提示OK表示验证经过。

 

实际测试一下读写。输入set k1 "Hello World!”并回车,用来保存一个键值。再输入get k1,获取刚才保存的键值。

 

 Redis的安装和简单使用测试完成,能够看出,它的原生操做是在cmd命令行操做的,应该会有图形化操做界面工具可以使用:

RedisDesktopManager

它是Redis可视化工具

能够自行下载,附分享下载地址:(安装和使用略过)

 连接: https://pan.baidu.com/s/1uuCubuYkapJKeUNFbrvekA 提取码: 6gpk 
下载地址

linux下安装

wget http://download.redis.io/releases/redis-3.0.6.tar.gz
tar xzf redis-3.0.6.tar.gz
cd redis-3.0.6
make

# 启动服务端
src/redis-server

# 启动客户端
src/redis-cli
redis> set foo bar
OK
redis> get foo
"bar"

 3、Pycharm下操做Redis

 安装:pip3 install redis

使用Redis链接池:

 string操做

String操做,redis中的String在在内存中按照一个name对应一个value来存储

set(name, value, ex=None, px=None, nx=False, xx=False)

在Redis中设置值,默认,不存在则建立,存在则修改
参数:
     ex,过时时间(秒)
     px,过时时间(毫秒)
     nx,若是设置为True,则只有name不存在时,当前set操做才执行,值存在,就修改不了,执行没效果
     xx,若是设置为True,则只有name存在时,当前set操做才执行,值存在才能修改,值不存在,不会设置新值

 

 get(name)

获取key值对应的value值
若是取不到返回None

setnx(name, value)

设置值,只有name不存在时,执行设置操做(添加),若是存在,不会修改

setex(name, time, value)

# 设置值
# 参数:
    # time,过时时间(数字秒 或 timedelta对象)

psetex(name, time_ms, value)  过时时间单位为毫秒

# 设置值
# 参数:
    # time_ms,过时时间(数字毫秒 或 timedelta对象

 mset(*args, **kwargs)和mget(keys, *args)

批量设置值
如:mget({'k1': 'v1', 'k2': 'v2'})

批量获取
如:
    mget('k1', 'k2')
    或
    r.mget(['k3', 'k4'])

getset(name, value)

设置新值并获取老值

 getrange(key, start, end)

# 获取子序列(根据字节获取,非字符)
# 参数:
    # name,Redis 的 key
    # start,起始位置(字节)
    # end,结束位置(字节)
    # 前闭后闭
# 如: "王大锤" ,0-2表示 "王"

setrange(name, offset, value)

# 修改字符串内容,从指定字符串索引开始向后替换(替换的字符若是太长则扩张)
# 参数
    # offset,字符串的索引,字节(一个汉字三个字节)
    # value,要设置的值

 

 strlen(name)

# 返回key值对应的字节长度(一个汉字占3个字节)

incr(name, amount=1)

# 自增 name对应的值,当name不存在时,则建立name=amount,不然,则自增。
 
# 参数:
    # name,Redis的name
    # amount,自增数(必须是整数),为负数就是自减
 
# 注:同incrby

incrbyfloat(name, amount=1.0)

# 自增 name对应的值,当name不存在时,则建立name=amount,不然,则自增。
 
# 参数:
    # name,Redis的name
    # amount,自增数(浮点型)

decr(self, name, amount=1)

# 自减 name对应的值,当name不存在时,则建立name=amount(取负数),不然,则自减。
 
# 参数:
    # name,Redis的name
    # amount,自减数(整数),能够是负数,若是是负数则变成自增性质

append(key, value)

# 在redis name对应的值后面追加内容
 
# 参数:
    key, redis的name
    value, 要追加的字符串

其它不经常使用的:

setbit(name, offset, value)

# 对name对应值的二进制表示的位进行操做
 
# 参数:
    # name,redis的name
    # offset,位的索引(将值变换成二进制后再进行索引)
    # value,值只能是 1 或 0
 
# 注:若是在Redis中有一个对应: n1 = "foo",
        那么字符串foo的二进制表示为:01100110 01101111 01101111
    因此,若是执行 setbit('n1', 7, 1),则就会将第7位设置为1,
        那么最终二进制则变成 01100111 01101111 01101111,即:"goo"

getbit(name, offset)

# 获取name对应的值的二进制表示中的某位的值 (0或1)

bitcount(key, start=None, end=None)

# 获取name对应的值的二进制表示中 1 的个数
# 参数:
    # key,Redis的name
    # start,位起始位置
    # end,位结束位置

bitop(operation, dest, *keys)

# 获取多个值,并将值作位运算,将最后的结果保存至新的name对应的值
 
# 参数:
    # operation,AND(并) 、 OR(或) 、 NOT(非) 、 XOR(异或)
    # dest, 新的Redis的name
    # *keys,要查找的Redis的name
 
# 如:
    bitop("AND", 'new_name', 'n1', 'n2', 'n3')
    # 获取Redis中n1,n2,n3对应的值,而后讲全部的值作位运算(求并集),而后将结果保存 new_name 对应的值中

 Hash操做

Hash操做,redis中Hash在内存中的存储格式以下图:

hset(name, key, value)

# name对应的hash中设置一个键值对(不存在,则建立;不然,修改)
 
# 参数:
    # name,redis的name
    # key,name对应的hash中的key
    # value,name对应的hash中的value
 
# 注:
    # hsetnx(name, key, value),当name对应的hash中不存在当前key时则建立(至关于添加)

hget(name,key)

# 在name对应的hash中获取根据key获取value

hmset(name, mapping)

# 在name对应的hash中批量设置键值对
 
# 参数:
    # name,redis的name
    # mapping,字典,如:{'k1':'v1', 'k2': 'v2'}
 
# 如:
    # r.hmset('xx', {'k1':'v1', 'k2': 'v2'})

hmget(name, keys, *args)

# 在name对应的hash中获取多个key的值,返回的是列表
 
# 参数:
    # name,reids对应的name
    # keys,要获取key集合,如:['k1', 'k2', 'k3']
    # *args,要获取的key,如:k1,k2,k3
 
# 如:
    # r.mget('xx', ['k1', 'k2'])
    # 或
    # print r.hmget('xx', 'k1', 'k2')

hgetall(name)

# 获取name对应hash的全部键值,返回一个键值对的字典,若是取不到返回{}空字典

hlen(name)

# 获取name对应的hash中键值对的个数

hkeys(name)

# 获取name对应的hash中全部的key的值,返回一个列表

hvals(name)

# 获取name对应的hash中全部的value的值,返回一个列表

hexists(name, key)

# 检查name对应的hash是否存在当前传入的key,返回True和False

hdel(name,*keys)

# 将name对应的hash中指定key的键值对删除,返回1或0

hincrby(name, key, amount=1)

# 自增name对应的hash中的指定key的值,不存在则建立key=amount
# 参数:
    # name,redis中的name
    # key, hash对应的key
    # amount,自增数(整数)

hincrbyfloat(name, key, amount=1.0)

# 自增name对应的hash中的指定key的值,不存在则建立key=amount
 
# 参数:
    # name,redis中的name
    # key, hash对应的key
    # amount,自增数(浮点数)
 
# 自增name对应的hash中的指定key的值,不存在则建立key=amount

hscan(name, cursor=0, match=None, count=None)

# 增量式迭代获取,对于数据大的数据很是有用,hscan能够实现分片的获取数据,并不是一次性将数据所有获取完,从而放置内存被撑爆
 
# 参数:
    # name,redis的name
    # cursor,游标(基于游标分批取获取数据)
    # match,匹配指定key,默认None 表示全部的key
    # count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数
 
# 如:
    # 第一次:cursor1, data1 = r.hscan('xx', cursor=0, match=None, count=None)
    # 第二次:cursor2, data1 = r.hscan('xx', cursor=cursor1, match=None, count=None)
    # ...
    # 直到返回值cursor的值为0时,表示数据已经经过分片获取完毕

hscan是每次取出必定量的数据,而后能够根据获取的游标继续再获取剩余的。

hscan_iter(name, match=None, count=None)

# 利用yield封装hscan建立生成器,实现分批去redis中获取数据
 
# 参数:
    # match,匹配指定key,默认None 表示全部的key
    # count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数
 
# 如:
    # for item in r.hscan_iter('xx'):
    #     print item

count参数是控制一次从Redis中取出的值的个数,好比count=10,是一次取10个,迭代完了再去Redis中取,若是count不传值,就会所有取出来

list操做 

List操做,redis中的List在在内存中按照一个name对应一个List来存储。如图:

lpush(name,values)

# 在name对应的list中添加元素,每一个新的元素都添加到列表的最左边
 
# 如:
    # r.lpush('oo', 11,22,33)
    # 保存顺序为: 33,22,11
 
# 扩展:
    # rpush(name, values) 表示从右向左操做

lpushx(name,value)

# 在name对应的list中添加元素,只有name已经存在时,值添加到列表的最左边,不然不作任何操做
 
# 更多:
    # rpushx(name, value) 表示从右向左操做

llen(name)

# name对应的list元素的个数

linsert(name, where, refvalue, value))

# 在name对应的列表的某一个值前或后插入一个新值
 
# 参数:
    # name,redis的name
    # where,BEFORE或AFTER(小写也能够)
    # refvalue,标杆值,即:在它先后插入数据(若是存在多个标杆值,以找到的第一个为准)
    # value,要插入的数据

r.lset(name, index, value)

# 对name对应的list中的某一个索引位置从新赋值
 
# 参数:
    # name,redis的name
    # index,list的索引位置
    # value,要设置的值

r.lrem(name, value, num)

# 在name对应的list中删除指定的值
 
# 参数:
    # name,redis的name
    # value,要删除的值
    # num,  num=0,删除列表中全部的指定值;
           # num=2,从前到后,删除2个;
           # num=-2,从后向前,删除2个

lpop(name)

# 在name对应的列表的左侧获取第一个元素并在列表中移除,返回值则是第一个元素
 
# 更多:
    # rpop(name) 表示从右向左操做

lindex(name, index)

在name对应的列表中根据索引获取列表元素

lrange(name, start, end)

# 在name对应的列表分片获取数据
# 参数:
    # name,redis的name
    # start,索引的起始位置
    # end,索引结束位置  print(re.lrange('aa',0,re.llen('aa')))

blpop(keys, timeout)

# 将多个列表排列,按照从左到右去pop对应列表的元素
 
# 参数:
    # keys,redis的name的集合
    # timeout,超时时间,当元素全部列表的元素获取完以后,阻塞等待列表内有数据的时间(秒), 0 表示永远阻塞
 
# 更多:
    # r.brpop(keys, timeout),从右向左获取数据
爬虫实现简单分布式:多个url放到列表里,往里不停放URL,程序循环取值,可是只能一台机器运行取值,能够把url放到redis中,多台机器从redis中取值,爬取数据,实现简单分布式

brpoplpush(src, dst, timeout=0)

# 从一个列表的右侧移除一个元素并将其添加到另外一个列表的左侧
 
# 参数:
    # src,取出并要移除元素的列表对应的name
    # dst,要插入元素的列表对应的name
    # timeout,当src对应的列表中没有数据时,阻塞等待其有数据的超时时间(秒),0 表示永远阻塞

自定义增量迭代

# 因为redis类库中没有提供对列表元素的增量迭代,若是想要循环name对应的列表的全部元素,那么就须要:
    # 一、获取name对应的全部列表
    # 二、循环列表
# 可是,若是列表很是大,那么就有可能在第一步时就将程序的内容撑爆,全部有必要自定义一个增量迭代的功能:
import redis
conn=redis.Redis(host='127.0.0.1',port=6379)
# conn.lpush('test',*[1,2,3,4,45,5,6,7,7,8,43,5,6,768,89,9,65,4,23,54,6757,8,68])
# conn.flushall()
def scan_list(name,count=2):
    index=0
    while True:
        data_list=conn.lrange(name,index,count+index-1)
        if not data_list:
            return
        index+=count
        for item in data_list:
            yield item
print(conn.lrange('test',0,100))
for item in scan_list('test',5):
    print('---')
    print(item)

set操做

待编辑...

Set操做,Set集合就是不容许重复的列表

 sadd(name,values)

# name对应的集合中添加元素

scard(name)

获取name对应的集合中元素个数

sdiff(keys, *args)

在第一个name对应的集合中且不在其余name对应的集合的元素集合

sdiffstore(dest, keys, *args)

# 获取第一个name对应的集合中且不在其余name对应的集合,再将其新加入到dest对应的集合中

sinter(keys, *args)

# 获取多一个name对应集合的并集

sinterstore(dest, keys, *args)

# 获取多一个name对应集合的并集,再讲其加入到dest对应的集合中

sismember(name, value)

# 检查value是不是name对应的集合的成员

smembers(name)

# 获取name对应的集合的全部成员

smove(src, dst, value)

# 将某个成员从一个集合中移动到另一个集合

spop(name)

# 从集合的右侧(尾部)移除一个成员,并将其返回

srandmember(name, numbers)

# 从name对应的集合中随机获取 numbers 个元素

srem(name, values)

# 在name对应的集合中删除某些值

srem(name, values)

# 在name对应的集合中删除某些值

sunion(keys, *args)

# 获取多一个name对应的集合的并集

sunionstore(dest,keys, *args)

# 获取多一个name对应的集合的并集,并将结果保存到dest对应的集合中

sscan(name, cursor=0, match=None, count=None)
sscan_iter(name, match=None, count=None)

# 同字符串的操做,用于增量迭代分批获取元素,避免内存消耗太大

有序集合,在集合的基础上,为每元素排序;元素的排序须要根据另一个值来进行比较,因此,对于有序集合,每个元素有两个值,即:值和分数,分数专门用来作排序。

 zadd(name, *args, **kwargs)

# 在name对应的有序集合中添加元素
# 如:
     # zadd('zz', 'n1', 1, 'n2', 2)
     # 或
     # zadd('zz', n1=11, n2=22)

zcard(name)

# 获取name对应的有序集合元素的数量

zcount(name, min, max)

# 获取name对应的有序集合中分数 在 [min,max] 之间的个数

zincrby(name, value, amount)

# 自增name对应的有序集合的 name 对应的分数

r.zrange( name, start, end, desc=False, withscores=False, score_cast_func=float)

# 按照索引范围获取name对应的有序集合的元素
 
# 参数:
    # name,redis的name
    # start,有序集合索引发始位置(非分数)
    # end,有序集合索引结束位置(非分数)
    # desc,排序规则,默认按照分数从小到大排序
    # withscores,是否获取元素的分数,默认只获取元素的值
    # score_cast_func,对分数进行数据转换的函数
 
# 更多:
    # 从大到小排序
    # zrevrange(name, start, end, withscores=False, score_cast_func=float)
 
    # 按照分数范围获取name对应的有序集合的元素
    # zrangebyscore(name, min, max, start=None, num=None, withscores=False, score_cast_func=float)
    # 从大到小排序
    # zrevrangebyscore(name, max, min, start=None, num=None, withscores=False, score_cast_func=float)

zrank(name, value)

# 获取某个值在 name对应的有序集合中的排行(从 0 开始)
 
# 更多:
    # zrevrank(name, value),从大到小排序

zrangebylex(name, min, max, start=None, num=None)

# 当有序集合的全部成员都具备相同的分值时,有序集合的元素会根据成员的 值 (lexicographical ordering)来进行排序,而这个命令则能够返回给定的有序集合键 key 中, 元素的值介于 min 和 max 之间的成员
# 对集合中的每一个成员进行逐个字节的对比(byte-by-byte compare), 并按照从低到高的顺序, 返回排序后的集合成员。 若是两个字符串有一部份内容是相同的话, 那么命令会认为较长的字符串比较短的字符串要大
 
# 参数:
    # name,redis的name
    # min,左区间(值)。 + 表示正无限; - 表示负无限; ( 表示开区间; [ 则表示闭区间
    # min,右区间(值)
    # start,对结果进行分片处理,索引位置
    # num,对结果进行分片处理,索引后面的num个元素
 
# 如:
    # ZADD myzset 0 aa 0 ba 0 ca 0 da 0 ea 0 fa 0 ga
    # r.zrangebylex('myzset', "-", "[ca") 结果为:['aa', 'ba', 'ca']
 
# 更多:
    # 从大到小排序
    # zrevrangebylex(name, max, min, start=None, num=None)

zrem(name, values)

# 删除name对应的有序集合中值是values的成员
 
# 如:zrem('zz', ['s1', 's2'])

zremrangebyrank(name, min, max)

# 根据排行范围删除

zremrangebyscore(name, min, max)

# 根据分数范围删除

zremrangebylex(name, min, max)

# 根据值返回删除

zscore(name, value)

# 获取name对应有序集合中 value 对应的分数

zinterstore(dest, keys, aggregate=None)

# 获取两个有序集合的交集,若是遇到相同值不一样分数,则按照aggregate进行操做
# aggregate的值为:  SUM  MIN  MAX

zunionstore(dest, keys, aggregate=None)

# 获取两个有序集合的并集,若是遇到相同值不一样分数,则按照aggregate进行操做
# aggregate的值为:  SUM  MIN  MAX

zscan(name, cursor=0, match=None, count=None, score_cast_func=float)
zscan_iter(name, match=None, count=None,score_cast_func=float)

# 同字符串类似,相较于字符串新增score_cast_func,用来对分数进行操做

其它常见的操做

delete(*names)

# 根据删除redis中的任意数据类型

exists(name)

# 检测redis的name是否存在

keys(pattern='*')

# 根据模型获取redis的name
 
# 更多:
    # KEYS * 匹配数据库中全部 key 。
    # KEYS h?llo 匹配 hello , hallo 和 hxllo 等。
    # KEYS h*llo 匹配 hllo 和 heeeeello 等。
    # KEYS h[ae]llo 匹配 hello 和 hallo ,但不匹配 hillo 

expire(name ,time)

# 为某个redis的某个name设置超时时间

rename(src, dst)

# 对redis的name重命名为

move(name, db))

# 将redis的某个值移动到指定的db下

randomkey()

# 随机获取一个redis的name(不删除)

type(name)

# 获取name对应值的类型

4、管道

redis-py默认在执行每次请求都会建立(链接池申请链接)和断开(归还链接池)一次链接操做,若是想要在一次请求中指定多个命令,则可使用pipline实现一次请求指定多个命令,而且默认状况下一次pipline 是原子性操做。

import redis
 
pool = redis.ConnectionPool(host='10.211.55.4', port=6379)
 
r = redis.Redis(connection_pool=pool)
 
# pipe = r.pipeline(transaction=False)
pipe = r.pipeline(transaction=True)
pipe.multi()
pipe.set('name', 'alex')
pipe.set('role', 'sb')
 
pipe.execute()

5、Django中的Redis

方式一:

utils文件夹下,创建redis_pool.py

import redis
POOL = redis.ConnectionPool(host='127.0.0.1', port=6379,password='1234',max_connections=1000)

视图函数中使用:

import redis
from django.shortcuts import render,HttpResponse
from utils.redis_pool import POOL

def index(request):
    conn = redis.Redis(connection_pool=POOL)
    conn.hset('kkk','age',18)

    return HttpResponse('设置成功')
def order(request):
    conn = redis.Redis(connection_pool=POOL)
    conn.hget('kkk','age')

    return HttpResponse('获取成功')

方式二:

安装django-redis模块

pip3 install django-redis

setting里配置:

# redis配置
CACHES = {
    "default": {
        "BACKEND": "django_redis.cache.RedisCache",
        "LOCATION": "redis://127.0.0.1:6379",
        "OPTIONS": {
            "CLIENT_CLASS": "django_redis.client.DefaultClient",
            "CONNECTION_POOL_KWARGS": {"max_connections": 100}
            # "PASSWORD": "123",
        }
    }
}

视图函数:

from django_redis import get_redis_connection
conn = get_redis_connection('default')
print(conn.hgetall('xxx'))
相关文章
相关标签/搜索