网络编程之并发编程——生产者消费者模型

网络编程之并发编程——生产者消费者模型

1、生产者消费者模型介绍

为何要使用生产者消费者模型?python

生产者指的是生产数据的任务,消费者指的是处理数据的任务。在并发编程中,若是生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。一样的道理,若是消费者的处理能力大于生产者,俺么消费者就必须等待生产者。为了解决这个问题因而引入了生产者和消费者模式。编程

什么是生产者和消费者模式?网络

生产者消费者模式是经过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通信,而经过阻塞队列来进行通信,因此生产者生产完数据以后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就至关于一个缓冲区,平衡了生产者和消费者的处理能力。并发

这个阻塞队列就是用来给生产者和消费者解耦的。dom

2、生产者消费者模型实现

基于上一小节学习的队列来实现一个生产者消费者模型:学习

from multiprocessing import Process,Queue
import time,random,os
def consumer(q,name):
    while True:
        res=q.get()
        time.sleep(random.randint(1,3))
        print('\033[43m%s 吃 %s\033[0m' %(name,res))
def producer(q,name,food):
    for i in range(3):
        time.sleep(random.randint(1,3))
        res='%s%s' %(food,i)
        q.put(res)
        print('\033[45m%s 生产了 %s\033[0m' %(name,res))
if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=(q,'egon','包子'))
    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,'alex'))
    #开始
    p1.start()
    c1.start()
    print('主')

执行结果:code

主
egon 生产了 包子0
egon 生产了 包子1
alex 吃 包子0
alex 吃 包子1
egon 生产了 包子2
alex 吃 包子2

此时的问题是主进程永远不会结束,缘由是:生产者p在生产完后就结束了,可是消费者c在取空了q以后,则一直处于死循环中且卡在q.get()这一步。队列

解决方式无非是让生产者在生产完毕后,往队列中再发一个结束信号,这样消费者再接收到结束信号后就能够break出死循环。进程

from multiprocessing import Process,Queue
import time,random,os
def consumer(q,name):
    while True:
        res=q.get()
        if res is None:break
        time.sleep(random.randint(1,3))
        print('\033[43m%s 吃 %s\033[0m' %(name,res))
def producer(q,name,food):
    for i in range(3):
        time.sleep(random.randint(1,3))
        res='%s%s' %(food,i)
        q.put(res)
        print('\033[45m%s 生产了 %s\033[0m' %(name,res))
if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=(q,'egon','包子'))
    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,'alex'))
    #开始
    p1.start()
    c1.start()
    p1.join()
    q.put(None)
    print('主')

但上述解决方式,在有多个生产者和多个消费者时,咱们则选用一个很low的方式解决,有几个消费者就须要发送几回结束信号:至关low。例如:ip

from multiprocessing import Process,Queue
import time,random,os
def consumer(q,name):
    while True:
        res=q.get()
        if res is None:break
        time.sleep(random.randint(1,3))
        print('\033[43m%s 吃 %s\033[0m' %(name,res))
def producer(q,name,food):
    for i in range(3):
        time.sleep(random.randint(1,3))
        res='%s%s' %(food,i)
        q.put(res)
        print('\033[45m%s 生产了 %s\033[0m' %(name,res))
if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=(q,'egon1','包子'))
    p2=Process(target=producer,args=(q,'egon2','骨头'))
    p3=Process(target=producer,args=(q,'egon3','泔水'))
    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,'alex1'))
    c2=Process(target=consumer,args=(q,'alex2'))
    #开始
    p1.start()
    p2.start()
    p3.start()
    c1.start()
    c2.start()
    p1.join()
    p2.join()
    p3.join()
    q.put(None)
    q.put(None)
    q.put(None)
    print('主')

1、数字

相关文章
相关标签/搜索