redis 学习指南

1、介绍git

Redis是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、一个高性能的key-value数据库。并提供多种语言的API。说到Key-Value数据库NoSQL数据库能够想到MongoDB。 github

和Memcached相似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操做,并且这些操做都是原子性的。在此基础上,redis支持各类不一样方式的排序。与memcached同样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操做写入追加的记录文件,而且在此基础上实现了master-slave(主从)同步。redis

 

2、 基于windows 64bit安装

安装以前请务必肯定你是Administrator管理员帐号的windows用户!若是不是 Administrator用户,则可能须要以管理员身份运行. 或者参考 Windows 7 启用超级管理员administrator帐户的N种方法 算法

在redis的下载页面有这样的一段话,说的意思是指redis项目未有提供对windows系统的支持,而Microsoft Open Tech提供了一个基于win64的redis实现。那就是说只支持64位系统了,32位的windows系统的同窗就老老实实的换系统去吧。(*^__^*) 数据库

The Redis project does not officially support Windows. However, the Microsoft Open Tech group develops and maintains this Windows port targeting Win64.
 

一、 下载与安装 windows

下载地址:https://github.com/MSOpenTech/redis/releases/download/win-2.8.19/redis-2.8.19.zip api

下载成功后解压能够看到以下文件 缓存

clip_image002

Windows下的安装几乎没有什么过程,解压后就可使用。简单介绍下着几个exe文件的用途: 安全

redis.windows.conf redis的配置文件 服务器

redis-benchmark.exe 测试工具,测试redis的读写性能状况

redis-check-aof.exe aof 修复检查日志

redis-check-dump.exe dump 检查数据库文件

redis-cli.exe redis客户端程序

redis-server.exe redis服务器程序

 
3、 使用redis工具

一、 redis-server 双击运行或者用dos命令打开均可以,成功运行后能够看到界面内容以下:

clip_image004

会带有版本号、运行进程号、运行端口信息。而且会提醒使用redis.windows.conf配置文件。若是你启动失败的话,提醒内存问题。那就须要修改下配置文件的maxheap配置(默认状况下该配置没有赋值的,且没有开启),修改以下:

# maxheap <bytes>

maxheap 1024000000

还有一种启动方式就是带指定redis.conf配置文件的启动方式,以下:

clip_image006

当你想使用不一样的配置文件来设置不一样服务器参数的时候就须要这样,默认会使用根目录下的配置文件。

redis-server /biran/conf/redis.conf 启动并加装指定配置文件

redis-server - (read config from stdin) 使用标准输入读取配置为启动参数

redis-server --test-memory 256 检测256MB内存

redis-server –version 查版本号

若是准备长期使用,则须要注册为系统服务.

进入CMD,切换到redis所在目录:

注册服务,能够保存为 service-install.bat 文件:

redis-server.exe --service-install redis.windows.conf --loglevel verbose

redis-server --service-start

卸载服务, 能够保存为 uninstall-service.bat 文件:

redis-server --service-stop

redis-server --service-uninstall

能够在注册服务时,经过 –service-name redisService1 参数直接指定服务名,适合安装多个实例的状况,卸载也是一样的道理.

启动redis服务器时也能够直接指定配置文件,能够保存为 startup.bat 文件:

redis-server.exe redis.windows.conf

 

二、 redis.windows.conf各项配置参数介绍

# 默认状况下,redis不是在后台模式运行的,若是须要在后台进程运行,把该项的值更改成yes,默认为no

daemonize:是否之后台daemon方式运行

# 如redis服务之后台进程运行的时候,Redis默认会把pid写入/run/redis.pid文件组,你能够配置到其余文件路径。

# 当运行多个redis服务时,须要指定不一样的pid文件和端口

pidfile:pid文件位置

# 指定redis监听端口,默认为6379

# 若是端口设置为0,Redis就不会监听TCP套接字。

port:监听的端口号

# 指定redis只接收来自于该IP地址的请求,若是不进行设置,默认将处理全部请求,

# 在生产环境中最好设置该项

bind 127.0.0.1

# 设置客户端链接时的超时时间,单位为秒。当客户端在这段时间内没有发出任何指令,那么关闭该链接

# 默认值:0表明禁用,永不关闭

timeout:请求超时时间

# 指定用来监听链接的unxi套接字的路径。这个没有默认值,因此若是不指定的话,Redis就不会经过unix套接字来监听。

# unixsocket /tmp/redis.sock

# unixsocketperm 755

# 指定日志记录级别

# Redis总共支持四个级别:debug、verbose、notice、warning,默认为verbose

# debug 记录不少信息,用于开发和测试

# varbose 不少精简的有用信息,不像debug会记录那么多

# notice 普通的verbose,经常使用于生产环境

# warning 只有很是重要或者严重的信息会记录到日志

loglevel:log信息级别

# 配置log文件名称和全路径地址

# 默认值为stdout,使用“标准输出”,默认后台模式会输出到/dev/null

logfile:log文件位置

# 可用数据库数,默认值为16,默认数据库存储在DB 0号ID库中,无特殊需求,建议仅设置一个数据库 databases 1

# 查询数据库使用 SELECT <dbid>

# dbid介于 0 到 'databases'-1 之间

databases:开启数据库的数量

save * *:保存快照的频率,第一个*表示多长时间,第三个*表示执行多少次写操做。在必定时间内执行必定数量的写操做时,自动保存快照。可设置多个条件。

rdbcompression:是否使用压缩

dbfilename:数据快照文件名(只是文件名,不包括目录)

dir:数据快照的保存目录(这个是目录)

appendonly:是否开启appendonlylog,开启的话每次写操做会记一条log,这会提升数据抗风险能力,但影响效率。

appendfsync:appendonlylog如何同步到磁盘(三个选项,分别是每次写都强制调用fsync、每秒启用一次fsync、不调用fsync等待系统本身同步)

########## REPLICATION 同步 ##########

#

# 主从同步。经过 slaveof 配置来实现Redis实例的备份。

# 注意,这里是本地从远端复制数据。也就是说,本地能够有不一样的数据库文件、绑定不一样的IP、监听不一样的端口。

# 当本机为从服务时,设置主服务的IP及端口,在Redis启动时,它会自动从主服务进行数据同步

# slaveof <masterip> <masterport>

# 若是主服务master设置了密码(经过下面的 "requirepass" 选项来配置),slave服务链接master的密码,那么slave在开始同步以前必须进行身份验证,不然它的同步请求会被拒绝。

#当本机为从服务时,设置主服务的链接密码

# masterauth <master-password>

# 当一个slave失去和master的链接,或者同步正在进行中,slave的行为有两种可能:

# 1) 若是 slave-serve-stale-data 设置为 "yes" (默认值),slave会继续响应客户端请求,多是正常数据,也多是还没得到值的空数据。

# 2) 若是 slave-serve-stale-data 设置为 "no",slave会回复"正在从master同步(SYNC with master in progress)"来处理各类请求,除了 INFO 和 SLAVEOF 命令。

slave-serve-stale-data yes

# slave根据指定的时间间隔向服务器发送ping请求。

# 时间间隔能够经过 repl_ping_slave_period 来设置。

# 默认10秒

# repl-ping-slave-period 10

# 下面的选项设置了大块数据I/O、向master请求数据和ping响应的过时时间。

# 默认值60秒。

# 一个很重要的事情是:确保这个值比 repl-ping-slave-period 大,不然master和slave之间的传输过时时间比预想的要短。

# repl-timeout 60

########## SECURITY 安全 ##########

# 要求客户端在处理任何命令时都要验证身份和设置密码。

# 若是你不相信请求者,这个功能颇有用。

# 为了向后兼容的话,这段应该注释掉。并且大多数人不须要身份验证(例如:它们运行在本身的服务器上。)

# 警告:外部使用者能够每秒尝试150k的密码来试图破解密码,这意味着你须要一个高强度的密码,不然破解太容易了。

# 设置链接密码

# requirepass foobared

# 命令重命名,可设置多个

# 在共享环境下,能够为危险命令改变名字。好比,你能够为 CONFIG 改个其余不太容易猜到的名字,这样你本身仍然可使用,而别人却无法知道它。

# 例如:

# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52

# rename-command info info_biran

# rename-command set set_biran

# 甚至也能够经过给命令赋值一个空字符串来彻底禁用这条命令:

# rename-command CONFIG ""

########## LIMITS 限制 ##########

# 设置最大同时链接客户端数量。

# 默认没有限制,这个关系到Redis进程可以打开的文件描述符数量。

# 特殊值"0"表示没有限制。

# 一旦达到这个限制,Redis会关闭全部新链接并发送错误"达到最大用户数上限(max number of clients reached)"

# maxclients 128

# 不要用比设置的上限更多的内存。一旦内存使用达到上限,Redis会根据选定的回收策略(参见:maxmemmory-policy:内存策略设置)删除key。

# 若是由于删除策略问题Redis没法删除key,或者策略设置为 "noeviction",Redis会回复须要更多内存的错误信息给命令。

# 例如,SET,LPUSH等等。可是会继续合理响应只读命令,好比:GET。

# 在使用Redis做为LRU缓存,或者为实例设置了硬性内存限制的时候(使用 "noeviction" 策略)的时候,这个选项仍是满有用的。

# 警告:当一堆slave连上达到内存上限的实例的时候,响应slave须要的输出缓存所需内存不计算在使用内存当中。

# 这样当请求一个删除掉的key的时候就不会触发网络问题/从新同步的事件,而后slave就会收到一堆删除指令,直到数据库空了为止。

# 简而言之,若是你有slave连上一个master的话,那建议你把master内存限制设小点儿,确保有足够的系统内存用做输出缓存。

# (若是策略设置为"noeviction"的话就不无所谓了)

# 设置最大内存,达到最大内存设置后,Redis会先尝试清除已到期或即将到期的Key,当此方法处理后,任到达最大内存设置,将没法再进行写入操做。

# maxmemory 256000000分配256M内存

# maxmemory <bytes>

# 内存策略:若是达到内存限制了,Redis如何删除key。你能够在下面五个策略里面选:

#

# volatile-lru -> 根据LRU算法生成的过时时间来删除。

# allkeys-lru -> 根据LRU算法删除任何key。

# volatile-random -> 根据过时设置来随机删除key。

# allkeys->random -> 无差异随机删。

# volatile-ttl -> 根据最近过时时间来删除(辅以TTL)

# noeviction -> 谁也不删,直接在写操做时返回错误。

#

# 注意:对全部策略来讲,若是Redis找不到合适的能够删除的key都会在写操做时返回一个错误。

#

# 这里涉及的命令:set setnx setex append

# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd

# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby

# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby

# getset mset msetnx exec sort

#

# 默认值以下:

# maxmemory-policy volatile-lru

# LRU和最小TTL算法的实现都不是很精确,可是很接近(为了省内存),因此你能够用样例作测试。

# 例如:默认Redis会检查三个key而后取最旧的那个,你能够经过下面的配置项来设置样本的个数。

# maxmemory-samples 3

########## APPEND ONLY MODE 纯累加模式 ##########

# 默认状况下,Redis是异步的把数据导出到磁盘上。由于redis自己同步数据文件是按上面save条件来同步的,因此有的数据会在一段时间内只存在于内存中,这种状况下,当Redis宕机的时候,最新的数据就丢了。

# 若是不但愿丢掉任何一条数据的话就该用纯累加模式:一旦开启这个模式,Redis会把每次写入的数据在接收后都写入 appendonly.aof 文件。

# 每次启动时Redis都会把这个文件的数据读入内存里。

#

# 注意,异步导出的数据库文件和纯累加文件能够并存(此时须要把上面全部"save"设置都注释掉,关掉导出机制)。

# 若是纯累加模式开启了,那么Redis会在启动时载入日志文件而忽略导出的 dump.rdb 文件。

#

# 重要:查看 BGREWRITEAOF 来了解当累加日志文件太大了以后,怎么在后台从新处理这个日志文件。

# 设置:yes为纯累加模式

appendonly no

# 设置纯累加文件名字及保存路径,默认:"appendonly.aof"

# appendfilename appendonly.aof

# fsync() 请求操做系统立刻把数据写到磁盘上,不要再等了。

# 有些操做系统会真的把数据立刻刷到磁盘上;有些则要磨蹭一下,可是会尽快去作。

# Redis支持三种不一样的模式:

#

# no:不要马上刷,只有在操做系统须要刷的时候再刷。比较快。

# always:每次写操做都马上写入到aof文件。慢,可是最安全。

# everysec:每秒写一次。折衷方案。

# 默认的 "everysec" 一般来讲能在速度和数据安全性之间取得比较好的平衡。

# 若是你真的理解了这个意味着什么,那么设置"no"能够得到更好的性能表现(若是丢数据的话,则只能拿到一个不是很新的快照);

# 或者相反的,你选择 "always" 来牺牲速度确保数据安全、完整。

#

# 若是不肯定这些模式的使用,建议使用 "everysec"

#

# appendfsync always

appendfsync everysec

# appendfsync no

# 若是AOF的同步策略设置成 "always" 或者 "everysec",那么后台的存储进程(后台存储或写入AOF日志)会产生不少磁盘I/O开销。

# 某些Linux的配置下会使Redis由于 fsync() 而阻塞好久。

# 注意,目前对这个状况尚未完美修正,甚至不一样线程的 fsync() 会阻塞咱们的 write(2) 请求。

#

# 为了缓解这个问题,能够用下面这个选项。它能够在 BGSAVE 或 BGREWRITEAOF 处理时阻止 fsync()。

#

# 这就意味着若是有子进程在进行保存操做,那么Redis就处于"不可同步"的状态。

# 这其实是说,在最差的状况下可能会丢掉30秒钟的日志数据。(默认Linux设定)

#

# 若是你有延迟的问题那就把这个设为 "yes",不然就保持 "no",这是保存持久数据的最安全的方式。

no-appendfsync-on-rewrite no

# 自动重写AOF文件

# 若是AOF日志文件大到指定百分比,Redis可以经过 BGREWRITEAOF 自动重写AOF日志文件。

#

# 工做原理:Redis记住上次重写时AOF日志的大小(或者重启后没有写操做的话,那就直接用此时的AOF文件),

# 基准尺寸和当前尺寸作比较。若是当前尺寸超过指定比例,就会触发重写操做。

#

# 你还须要指定被重写日志的最小尺寸,这样避免了达到约定百分比但尺寸仍然很小的状况还要重写。

#

# 指定百分比为0会禁用AOF自动重写特性。

auto-aof-rewrite-percentage 100

auto-aof-rewrite-min-size 64mb

########## SLOW LOG 慢查询日志 ##########

# Redis慢查询日志能够记录超过指定时间的查询。运行时间不包括各类I/O时间。

# 例如:链接客户端,发送响应数据等。只计算命令运行的实际时间(这是惟一一种命令运行线程阻塞而没法同时为其余请求服务的场景)

#

# 你能够为慢查询日志配置两个参数:一个是超标时间,单位为微妙,记录超过个时间的命令。

# 另外一个是慢查询日志长度。当一个新的命令被写进日志的时候,最老的那个记录会被删掉。

#

# 下面的时间单位是微秒,因此1000000就是1秒。注意,负数时间会禁用慢查询日志,而0则会强制记录全部命令。

slowlog-log-slower-than 10000

# 这个长度没有限制。只要有足够的内存就行。你能够经过 SLOWLOG RESET 来释放内存。

slowlog-max-len 128

########## VIRTUAL MEMORY 虚拟内存 ##########

### 警告!虚拟内存在Redis 2.4是反对的,因性能问题,2.4版本 VM机制完全废弃,不建议使用此配置!!!!!!!!!!!

# 虚拟内存可使Redis在内存不够的状况下仍然能够将全部数据序列保存在内存里。

# 为了作到这一点,高频key会调到内存里,而低频key会转到交换文件里,就像操做系统使用内存页同样。

# 要使用虚拟内存,只要把 "vm-enabled" 设置为 "yes",并根据须要设置下面三个虚拟内存参数就能够了。

vm-enabled no

# 这是交换文件的路径。估计你猜到了,交换文件不能在多个Redis实例之间共享,因此确保每一个Redis实例使用一个独立交换文件。

# 最好的保存交换文件(被随机访问)的介质是固态硬盘(SSD)。

# *** 警告 *** 若是你使用共享主机,那么默认的交换文件放到 /tmp 下是不安全的。

# 建立一个Redis用户可写的目录,并配置Redis在这里建立交换文件。

vm-swap-file /tmp/redis.swap

# "vm-max-memory" 配置虚拟内存可用的最大内存容量。

# 若是交换文件还有空间的话,全部超标部分都会放到交换文件里。

# "vm-max-memory" 设置为0表示系统会用掉全部可用内存,建议设置为剩余内存的60%-80%。

# 将全部大于vm-max-memory的数据存入虚拟内存,不管vm-max-memory设置多小,全部索引数据都是内存存储的(Redis的索引数据就是keys),也就是说,当vm-max-memory设置为0的时候,实际上是全部value都存在于磁盘。默认值为0。

vm-max-memory 0

# Redis交换文件是分红多个数据页的。

# 一个可存储对象能够被保存在多个连续页里,可是一个数据页没法被多个对象共享。

# 因此,若是你的数据页太大,那么小对象就会浪费掉不少空间。

# 若是数据页过小,那用于存储的交换空间就会更少(假定你设置相同的数据页数量)

# 若是你使用不少小对象,建议分页尺寸为64或32个字节。

# 若是你使用不少大对象,那就用大一些的尺寸。

# 若是不肯定,那就用默认值 :)

vm-page-size 32

# 交换文件里数据页总数。

# 根据内存中分页表(已用/未用的数据页分布状况),磁盘上每8个数据页会消耗内存里1个字节。

# 交换区容量 = vm-page-size * vm-pages

# 根据默认的32字节的数据页尺寸和134217728的数据页数来算,Redis的数据页文件会占4GB,而内存里的分页表会消耗16MB内存。

# 为你的应验程序设置最小且够用的数字比较好,下面这个默认值在大多数状况下都是偏大的。

vm-pages 134217728

# 同时可运行的虚拟内存I/O线程数,即访问swap文件的线程数。

# 这些线程能够完成从交换文件进行数据读写的操做,也能够处理数据在内存与磁盘间的交互和编码/解码处理。

# 多一些线程能够必定程度上提升处理效率,虽然I/O操做自己依赖于物理设备的限制,不会由于更多的线程而提升单次读写操做的效率。

# 特殊值0会关闭线程级I/O,并会开启阻塞虚拟内存机制。

# 设置最好不要超过机器的核数,若是设置为0,那么全部对swap文件的操做都是串行的.可能会形成比较长时间的延迟,可是对数据完整性有很好的保证.

vm-max-threads 4

########## ADVANCED CONFIG 高级配置 ##########

# 当有大量数据时,适合用哈希编码(这会须要更多的内存),元素数量上限不能超过给定限制。

# Redis Hash是value内部为一个HashMap,若是该Map的成员数比较少,则会采用相似一维线性的紧凑格式来存储该Map, 即省去了大量指针的内存开销,以下2个条件任意一个条件超过设置值都会转换成真正的HashMap,

# 当value这个Map内部不超过多少个成员时会采用线性紧凑格式存储,默认是64,即value内部有64个如下的成员就是使用线性紧凑存储,超过该值自动转成真正的HashMap。

hash-max-zipmap-entries 512

# 当 value这个Map内部的每一个成员值长度不超过多少字节就会采用线性紧凑存储来节省空间。

hash-max-zipmap-value 64

# 与hash-max-zipmap-entries哈希相相似,数据元素较少的状况下,能够用另外一种方式来编码从而节省大量空间。

# list数据类型多少节点如下会采用去指针的紧凑存储格式

list-max-ziplist-entries 512

# list数据类型节点值大小小于多少字节会采用紧凑存储格式

list-max-ziplist-value 64

# 还有这样一种特殊编码的状况:数据全是64位无符号整型数字构成的字符串。

# 下面这个配置项就是用来限制这种状况下使用这种编码的最大上限的。

set-max-intset-entries 512

# 与第1、第二种状况类似,有序序列也能够用一种特别的编码方式来处理,可节省大量空间。

# 这种编码只适合长度和元素都符合下面限制的有序序列:

zset-max-ziplist-entries 128

zset-max-ziplist-value 64

# 哈希刷新,每100个CPU毫秒会拿出1个毫秒来刷新Redis的主哈希表(顶级键值映射表)。

# redis所用的哈希表实现(见dict.c)采用延迟哈希刷新机制:你对一个哈希表操做越多,哈希刷新操做就越频繁;

# 反之,若是服务器很是不活跃那么也就是用点内存保存哈希表而已。

# 默认是每秒钟进行10次哈希表刷新,用来刷新字典,而后尽快释放内存。

# 建议:

# 若是你对延迟比较在乎的话就用 "activerehashing no",每一个请求延迟2毫秒不太好嘛。

# 若是你不太在乎延迟而但愿尽快释放内存的话就设置 "activerehashing yes"。

activerehashing yes

########## INCLUDES 包含 ##########

# 包含一个或多个其余配置文件。

# 这在你有标准配置模板可是每一个redis服务器又须要个性设置的时候颇有用。

# 包含文件特性容许你引人其余配置文件,因此好好利用吧。

# include /path/to/local.conf

# include /path/to/other.conf

修改配置后,若是配置文件涉及到中文内容记得将文件存为UTF-8编码。

 

三、 redis-cli 客户端使用

测试服务器启动链接状况

127.0.0.1:6379> ping

PONG

查看服务器级别信息(测试服务器)

127.0.0.1:6379> info

# Server

redis_version:2.8.19

redis_git_sha1:00000000

redis_git_dirty:0

redis_build_id:9968db13395be4aa

redis_mode:standalone

os:Windows

arch_bits:64

multiplexing_api:winsock_IOCP

gcc_version:0.0.0

process_id:9204

run_id:fc4a126eaed1572b6855c9af511d3451eb358c85

tcp_port:6379

uptime_in_seconds:2365

uptime_in_days:0

hz:10

lru_clock:3087964

config_file:G:\software\redis\redis.windows.conf

# Clients

connected_clients:1

client_longest_output_list:0

client_biggest_input_buf:0

blocked_clients:0

# Memory

used_memory:11568456

used_memory_human:11.03M

used_memory_rss:11534800

used_memory_peak:11568456

used_memory_peak_human:11.03M

used_memory_lua:35840

mem_fragmentation_ratio:1.00

mem_allocator:dlmalloc-2.8

# Persistence

loading:0

rdb_changes_since_last_save:0

rdb_bgsave_in_progress:0

rdb_last_save_time:1429148959

rdb_last_bgsave_status:ok

rdb_last_bgsave_time_sec:-1

rdb_current_bgsave_time_sec:-1

aof_enabled:0

添加数据

127.0.0.1:6379> set user hoojo

OK

127.0.0.1:6379> get user

"hoojo"

查看全部的key信息

127.0.0.1:6379> keys *

1) "key:000000000308"

2) "key:000000000900"

3) "key:__rand_int__"

4) "key:000000000809"

5) "key:000000000164"

6) "key:000000000887"

基本参数介绍

-h

设置检测主机IP地址,默认为127.0.0.1

-p

设置检测主机的端口号,默认为6379

-s<socket>

服务器套接字(压倒主机和端口)

-a

链接到Master服务器时使用的密码

-r

执行指定的N次命令

-i

执行命令后等待N秒,如–i 0.1 info(执行后等0.1秒)

-n

指定链接N号ID数据库,如 –n 3(链接3号数据库)

-x

从控制台输入的信息中读取最后一个参数

-d

定义多个定界符为默认输出格式(默认: \n)

--raw

使用原数据格式返回输出内容

--latency

进入一个不断延时采样的特殊模式

--slave

模拟一个从服务器到主服务器的命令显示反馈

--pipe

使用管道协议模式

--bigkeys

监听显示数据量大的key值,--bigkeys -i 0.1

--help

显示命令行帮助信息

--version

显示版本号

 

四、 redis-benchmark 性能测试工具

默认双击打开是按照默认的测试参数进行测试。

clip_image008

输入如上命令后会看到以下信息,代表同时并发10个链接,总共100次操做。通俗易懂的说就是10个用户同时操做,总共每人操做10次的意思。

100 requests completed in 0.01 seconds (100个请求完成于0.01秒)

10 parallel clients (10个客户端并发)

3 bytes payload (每次写入3个字节)

keep alive: 1 (保存一个连接数)

100.00% <= 1 milliseconds (100%的操做小于1秒完成)

16666.67 requests per second (每秒完成16666.67次查询)

命令参数说明

redis-benchmark [-h <host>] [-p <port>] [-c <clients>] [-n <requests]> [-k <boolean>]

-h <hostname> 主机名 (默认 127.0.0.1)

-p <port> 主机端口 (默认 6379)

-s <socket> 主机套接字 (覆盖主机和端口)

-c <clients> 并发链接的数量 (默认 50)

-n <requests> 请求总数 (默认 10000)

-d <size> SET/GET数据的字节大小(默认 2)

-k <boolean> 1=keep alive 0=reconnect (默认 1)

-r <keyspacelen> SET/GET/INCR使用随机产生的key, SADD使用随机值使用这个选项 get/set keys时会用mykey_rand:000000012456代替常量key, <keyspacelen>参数决定了随机数产生的最大值,好比,设置参数为10,那么产生的随机数范围是rand:000000000000 -rand:000000000009

-P <numreq> Pipeline请求的数量. 默认 1 (不使用pipeline).

-q 展现query/sec值

--csv 以CSV格式输出

-l 本地循环. 一直运行测试

-t <tests> 在运行逗号分割列表的测试. 测试的名字与产生输出的名字同样。

-I 空闲模式. 打开 N 个空闲链接,而后等待.

运行示例

对指定服务器、端口进行20个同时并发操做,总共操做100000次

redis-benchmark -h 192.168.1.136 -p 6379 -n 100000 -c 20

测试set写入操做1000000次,随机数范围在100000000

redis-benchmark -t set -n 1000000 -r 100000000

测试ping、set、get操做100000次,结果输出用csv格式

redis-benchmark -t ping,set,get -n 100000 –-csv

redis-benchmark -r 10000 -n 10000 lpush mylist ele:rand:000000000000

 

五、 redis-check-aof 基本用法

检查本地日志信息,加--fix参数为修复log文件

redis-check-aof.exe log.aof

 

六、 redis-check-dump 检查数据库文件

redis-check-dump.exe dump.rdb 会输出该文件大小、使用状况。

 

4、影响Redis性能的因素

* 网络带宽和延迟。在执行基准测试前使用ping快速检测客户端和服务器端的延迟是一个良好的作法。对于带宽,比较好的作法是估计Gbits/s 的吞吐量和网络的理论带宽值比较。在不少实际的状况,Redis的吞吐量在网络以前会受限于CPU。

* CPU也会是一个重要因素。因为单线程的,Redis受益于快速的含有巨大缓存的CPU。

* 内存的速度和容量对于小的对象影响不大。但对于大于10KB的对象,可能对须要注意。一般购买昂贵的快速内存模块并非真正的颇有效。

* Redis在虚拟机上运行慢。虚拟化对不少普通操做来讲代价过高了,Redis并无增长多少开销在所需的系统调用和网络中断上。

* 客户端和服务器在一台机器运行,对于基准测试TCP/IP回送和UNIX域套接字均可以使用。取决于平台,但UNIX域套接字比TCP/IP回送增长50%的吞吐量。

* 当大量使用 pipelining时,UNIX域套接字得到的性能好处会减小。

* 当以太网访问Redis时,在数据大小小于以太网数据包的大小(大约1500字节)时,汇集命令使用 pipelining会很是有效。

* 在多CPU套接字服务器,Redis的表现变得依赖于NUMA配置和处理位置。

* 在高端配置,客户端链接的数量也是一个重要的因素。基于epool/kqueue模型,Redis的事件循环是至关可伸缩的。

* 在高端的配置,经过调优NIC(s)配置和相关中断可能取得高吞吐量。

* 根据平台,Redis编译可使用不一样的内存分配器,这可能有不一样的行为在原始速度,内部和外部的碎片方面