【伍哥原创】html
使用python开发RabbitMQ应用
(参考了RabbitMQ网站上提供的英文版本入门指南: http://www.rabbitmq.com/getstarted.html)java
测试环境:CentOS 6.2python
1,测试环境准备git
安装RabbitMQ server,python(通常系统都自带了python)和pika 0.9.5。github
安装RabbitMQ server能够参考伍哥前面的文章。shell
安装pika通常有两种方式:
能够经过pip或者easy_install来进行,不过pip是python的包管理器,须要单独安装,而CentOS已经准备好easy_install了(其实就是一个python脚本)。
官方文档能够参考这里:http://pika.github.com/vim
1
2
3
4
5
6
7
8
9
10
11
|
$ easy_install pika
Reading https:
//tonyg
.github.com
/pika/
Reading http:
//pika
.github.com/
Best match: pika 0.9.5
Downloading http:
//pypi
.python.org
/packages/source/p/pika/pika-0
.9.5.
tar
.gz
Processing pika-0.9.5.
tar
.gz
Running pika-0.9.5
/setup
.py -q bdist_egg --dist-
dir
/tmp/easy_install-1C9Vbo/pika-0
.9.5
/egg-dist-tmp-k1W5aK
Adding pika 0.9.5 to easy-
install
.pth
file
Installed
/usr/lib/python2
.6
/site-packages/pika-0
.9.5-py2.6.egg
Processing dependencies
for
pika
Finished processing dependencies
for
pika
|
你应该会看到: pika被安装在/usr/lib/python2.6/site-packages/pika-0.9.5-py2.6.egg (蟒蛇蛋!嘿嘿)bash
而后把rabbitmq server启动一下和准备好测试目录rabbitmq_app:app
1
2
3
4
5
6
|
$
/usr/local/rabbitmq/sbin/rabbitmq-server
-detached
$
cd
~
$
mkdir
-p
test
/rabbitmq_app
$
cd
test
/rabbitmq_app
$
mkdir
tut1 tut2 tut3 tut4 tut5 tut6
|
2,实例一:来个hello world程序
负载均衡
1
2
3
|
$
cd
tut1
$ vim send.py (代码以下)
$ vim receive.py (代码以下)
|
首先是消息发送程序: send.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import
sys
import
pika
connection
=
pika.BlockingConnection(pika.ConnectionParameters(
'localhost'
))
channel
=
connection.channel()
channel.queue_declare(queue
=
'hello'
)
if
len
(sys.argv) <
2
:
print
'message is empty!'
sys.exit(
0
)
message
=
sys.argv[
1
]
channel.basic_publish(exchange
=
'
', routing_key='
hello', body
=
message)
print
" [x] sent: '"
+
message
+
"' \n"
connection.close()
|
跑一下send.py发送一个消息
1
2
3
4
5
6
|
$ python send.py
'Hello World!'
$ python send.py
'你好伍哥'
$
/usr/local/rabbitmq/sbin/rabbitmqctl
list_queues
Listing queues ...
hello 2
...
done
.
|
若是你也看到hello队列里面有一个消息的话,就证实能够发消息了。
而后写一个接收消息脚本:receive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import
pika
connection
=
pika.BlockingConnection(pika.ConnectionParameters(
'localhost'
))
channel
=
connection.channel()
channel.queue_declare(queue
=
'hello'
)
print
'[*] Waiting for messages. To exit press CTRL+C'
def
callback(ch, method, properties, body):
print
body
channel.basic_consume(callback, queue
=
'hello'
, no_ack
=
True
)
channel.start_consuming()
|
其中第12行的 no_ack=True 表示消费完了这个消息之后不主动把完成状态通知rabbitmq。
而后开另一个shell,执行一下receive.py
1
2
3
4
|
$ python receive.py
[*] Waiting
for
messages. To
exit
press CTRL+C
Hello World!
你好伍哥
|
3,实例二:工做队列(work queue / task queue)
通常应用于把比较耗时的任务从主线任务分离出来。好比一个http页面请求,里面须要发送带大附件的邮件、或者是要处理一张头像图片等。这类型工做队列的 处理端通常有多个worker进程,分担队列里面的任务。这就有点负载均衡的策略在里面了。尽可能作到每一个进程的工做量比较平均,并且是完成了一个任务才接 第二个任务。看看咱们的实现吧。
1
2
3
|
$
cd
tut2
$ vim manager.py (代码以下)
$ vim worker.py (代码以下)
|
首先是消息发送程序: manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import
pika
import
sys
parameters
=
pika.ConnectionParameters(host
=
'localhost'
)
connection
=
pika.BlockingConnection(parameters)
channel
=
connection.channel()
channel.queue_declare(queue
=
'task_queue'
, durable
=
True
)
message
=
' '
.join(sys.argv[
1
:])
or
"Hello World!"
channel.basic_publish(exchange
=
'',
routing_key
=
'task_queue'
,
body
=
message,
properties
=
pika.BasicProperties(
delivery_mode
=
2
,
# make message persistent
))
print
" [x] Sent %r"
%
(message,)
connection.close()
|
其中第8行的 durable=True 声明了队列须要持久化,第14行的 delivery_mode = 2 声明了队列的消息须要持久化。
而后写一个接收消息脚本:worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import
pika
import
time
connection
=
pika.BlockingConnection(pika.ConnectionParameters(
host
=
'localhost'
))
channel
=
connection.channel()
channel.queue_declare(queue
=
'task_queue'
, durable
=
True
)
print
' [*] Waiting for messages. To exit press CTRL+C'
def
callback(ch, method, properties, body):
print
" [x] Received %r"
%
(body,)
time.sleep( body.count(
'.'
) )
print
" [x] Done"
ch.basic_ack(delivery_tag
=
method.delivery_tag)
channel.basic_qos(prefetch_count
=
1
)
channel.basic_consume(callback,
queue
=
'task_queue'
)
channel.start_consuming()
|
其中第15行的 basic_ack 是执行完任务通知rabbitmq,第17行的basic_qos是告诉rabbitmq只有当worker完成了任务之后才分派1条新的消息,实现公平分派。
测试方法,开3个bash,2个跑worker,1个跑manager:
1
2
3
4
|
$ python manager.py task1.
$ python manager.py task2..
$ python manager.py task3...
$ python manager.py task4....
|
点号数量决定worker工做的时间( 实际上是睡觉时间,呵呵 time.sleep(body.count('.')) )。
而在worker那边,能够看到每一个worker都处理了两个任务。
这种分配机制就是所谓的循环调度(Round-robin dispatching)
4,实例三:发布和订阅
发布订阅模式,简单来讲就像是广播,一个消息发布出来之后,全部订阅者都能听到,至于接收到这个信息之后你们作什么就看具体我的了。
啊!怎么突然冒出个X,是什么玩意!这个X就是所谓的exchange,简单来讲就是消息的管家,由他决定接收到的信息是放特定的队列,仍是全部队列,仍是直接丢弃。
其实在前两个实例里面,已经用到了exchange (channel.basic_publish(exchange='',...),这个exchange的名字为空,外号无名(人若无名,即可专心练剑~)。他会把你的消息都转达给routing_key指明的队列。
当咱们声明了exchange之后,咱们须要为queue和exchange创建联系,这时候,就要用到绑定(binding)了。
1
2
3
|
$
cd
tut3
$ vim emitlog.py (代码以下)
$ vim recelog.py (代码以下)
|
emitlog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
#!/usr/bin/env python
import
pika
import
sys
connection
=
pika.BlockingConnection(pika.ConnectionParameters(
host
=
'localhost'
))
channel
=
connection.channel()
channel.exchange_declare(exchange
=
'logs'
,
type
=
'fanout'
)
message
=
' '
.join(sys.argv[
1
:])
or
"info: Hello World!"
channel.basic_publish(exchange
=
'logs'
,
routing_key
=
'',
body
=
message)
print
" [x] Sent %r"
%
(message,)
connection.close()
|
recelog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
#!/usr/bin/env python
import
pika
connection
=
pika.BlockingConnection(pika.ConnectionParameters(
host
=
'localhost'
))
channel
=
connection.channel()
channel.exchange_declare(exchange
=
'logs'
,
type
=
'fanout'
)
result
=
channel.queue_declare(exclusive
=
True
)
queue_name
=
result.method.queue
channel.queue_bind(exchange
=
'logs'
,
queue
=
queue_name)
print
' [*] Waiting for logs. To exit press CTRL+C'
def
callback(ch, method, properties, body):
print
" [x] %r"
%
(body,)
channel.basic_consume(callback,
queue
=
queue_name,
no_ack
=
True
)
channel.start_consuming()
|
测试:
和前一个实例差很少。开3个bash,2个跑recelog,1个跑emitlog。查看recelog是否都收到emitlog发送的消息。代码里面用 了一个fanout(意思是成扇形展开)类型的exchange,只要和exchange绑定的queue都能收到一份消息的 copy,routing_key会被忽略掉。
5,路由模式 (选择接收信息)
1
2
3
|
$
cd
tut4
$ vim emitlog.py (代码以下)
$ vim recelog.py (代码以下)
|
emitlog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
#!/usr/bin/env python
import
pika
import
sys
connection
=
pika.BlockingConnection(pika.ConnectionParameters(
host
=
'localhost'
))
channel
=
connection.channel()
channel.exchange_declare(exchange
=
'direct_logs'
,
type
=
'direct'
)
severity
=
sys.argv[
1
]
if
len
(sys.argv) >
1
else
'info'
message
=
' '
.join(sys.argv[
2
:])
or
'Hello World!'
channel.basic_publish(exchange
=
'direct_logs'
,
routing_key
=
severity,
body
=
message)
print
" [x] Sent %r:%r"
%
(severity, message)
connection.close()
|
这里声明exchange时类型定义为direct(直接匹配),就是说只有当一个信息的routing_key和队列的binding_key一 致时,信息才会被放入到这个队列。消息发布给exchange时必须带上routing_key。其实在消息生产端,队列这个概念是透明的。
recelog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
#!/usr/bin/env python
import
pika
import
sys
connection
=
pika.BlockingConnection(pika.ConnectionParameters(
host
=
'localhost'
))
channel
=
connection.channel()
channel.exchange_declare(exchange
=
'direct_logs'
,
type
=
'direct'
)
result
=
channel.queue_declare(exclusive
=
True
)
queue_name
=
result.method.queue
severities
=
sys.argv[
1
:]
if
not
severities:
print
>> sys.stderr,
"Usage: %s [info] [warning] [error]"
%
\
(sys.argv[
0
],)
sys.exit(
1
)
for
severity
in
severities:
channel.queue_bind(exchange
=
'direct_logs'
,
queue
=
queue_name,
routing_key
=
severity)
print
' [*] Waiting for logs. To exit press CTRL+C'
def
callback(ch, method, properties, body):
print
" [x] %r:%r"
%
(method.routing_key, body,)
channel.basic_consume(callback,
queue
=
queue_name,
no_ack
=
True
)
channel.start_consuming()
|
这里首先定义exchange,和消息发送端是同样的。而后定义队列,队列是自动命名,而且只要进程终止,队列就会终止。而后把队列和 exchange绑定,绑定时的routing_key是用户输入的,若是输入多个key,就作屡次的绑定。注意这里的队列仍是一个。若是你须要创建两个 队列,就得跑两次这个python脚本。
6,topic和rpc
官方tutorial还有两个高级一点的实例,topic和rpc,这里就不做说明了,留着你们学学英文吧 RabbitMQ提供了不少消息队列客户端代码,好比python,java,c等等,你们能够根据产品或项目的实际状况选择。关键是原理必须搞懂。