【数据结构】找出N个数据中最大的前k个数据(利用堆排序)

咱们举例,倘若从10000万个数里选出前100个最大的数据。ios


首先咱们先分析:既然要选出前100个最大的数据,咱们就创建一个大小为100的堆(建堆时就按找最大堆的规则创建,即每个根节点都大于它的子女节点),而后再将后面的剩余数据若符合要求就插入堆中,不符合就直接丢弃该数据。数据结构


那咱们如今考虑:肯定是该选择最大堆的数据结构仍是最小堆的数据结构呢。ide


分析一下:spa

若选用最大堆的话,堆顶是堆的最大值,咱们考虑既然要选出从10000万个数里选出前100个最大的数据,咱们在建堆的时候,已经考虑了最大堆的特性,那这样的话最大的数据必然在它顶端。倘若真不巧,我开始的前100个数据中已经有这10000个数据中的最大值了,那对于我后面剩余的10000-100的元素再想入堆是否是入不进去了!!!因此,选用最大堆从10000万个数里选出前100个最大的数据只能找出一个,而不是100个。blog


那若是选用最小堆的数据结构来解决,最顶端是最小值,再次遇到比它大的值,就能够入堆,入堆后从新调整堆,将小的值pass掉。这样咱们就能够选出最大的前K个数据了。言外之意,倘若咱们要找出N个数据中最小的前k个数据,就要用最大堆了。get



代码实现(对于最大堆最小堆的代码,如有不明白的地方,你们能够查看个人博客http://10740184.blog.51cto.com/10730184/1767076):博客

#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
using namespace std;

#include<assert.h>

void AdjustDown(int* a, int parent, int size)
{
    int child = 2 * parent + 1;
    while (child < size)
    {
        if (child + 1 < size && a[child] > a[child + 1])
        {
            child++;
        }
        if (a[parent]>a[child])
        {
            swap(a[parent], a[child]);
            parent = child;
            child = 2 * parent + 1;
        }
        else
        {
            break;
        }
    }
}


void Print(int* a, int size)
{
    cout << "前k个最大的数据:" << endl;
    for (int i = 0; i < size; i++)
    {
        cout << a[i] << "  ";
    }
    cout << endl;
}


int* HeapSet(int*a,int N,int K)
{
    assert(a);
    assert(K > 0);
    int* arr = new int[K];
    //将前K个数据保存
    for (int i = 0; i < K; i++)
    {
        arr[i] = a[i];
    }

    //建堆
    for (int i = (K-2)/2; i >=0; i--)
    {
        AdjustDown(arr,i,K);
    } 

    //对剩余的N-K个元素比较大小
    for (int i = K; i < N; i++)
    {
        if (arr[0]<a[i])
        {
            arr[0] = a[i];
            AdjustDown(arr, 0, K);
        }
    }

    return arr;
    delete[] arr;
}


void Test()
{
    int arr[] = { 12, 2, 10, 4, 6, 8, 54, 67, 25, 178 };
    int k = 5;
    int* ret = HeapSet(arr, sizeof(arr) / sizeof(arr[0]), k);
    Print(ret, k); 
}


int main()
{
    Test();
    system("pause");
    return 0;
}


由此能够看出,时间复杂度为:K+(K-2)/2*lgn+(N-K)*lgn  -->  O(N)it

空间复杂度为:K-->O(1)。
io

相关文章
相关标签/搜索