这里主要是先了解整个消息传递的过程,知道这样作的好处和必要性。而不是直接介绍里面的几个关键类,而后介绍这个机制,这样容易头晕。并且网络上已经有不少这样的文章了,那些做者所站的高度对于我这种初学者来讲有点高,我理解起来是比较稀里糊涂的,因此这里从一个问题出发,一步一步跟踪代码,这里只是搞清楚 handler 是怎么跨线程收发消息的,具体实现细节仍是参考网上的那些大神的 Blog 比较权威。
PS. 原本是想分章节书写,谁知道这一套军体拳打下来收不住了,因此下面基本是以一种很流畅的过程解释而不是很跳跃,细心看应该会对理解 Handler 机制有所收获。java
Q1: 假若有一个耗时的数据处理,并且数据处理的结果是对 UI 更新影响的,而 Android 中 UI 更新不是线程安全的,因此规定只能在主线程中更新。android
下面咱们有两种选择:安全
主线程版本:
public class MainActivity extends AppCompatActivity {
private static final String TAG = "MainActivity";
private Button btnTest;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.layout_test);
init();
}
private void init() {
btnTest = (Button) findViewById(R.id.btn_test);
btnTest.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
// 伪装数据处理
int i = 0;
for (i = 0; i < 10; i++) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
// 伪装更新 UI
Log.d(TAG, "Handle it!" + i);
}
});
}
}复制代码
直接在主线程中处理数据,接着直接根据处理结果更新 UI。我想弊端你们都看到了,小则 UI 卡顿,大则形成 ANR。bash
子线程版本:
public class MainActivity extends AppCompatActivity {
private static final String TAG = "MainActivity";
private Button btnTest;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.layout_test);
init();
}
private void init() {
btnTest = (Button) findViewById(R.id.btn_test);
btnTest.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
new Thread(new Runnable() {
@Override
public void run() {
// 伪装数据处理
int i;
for (i = 0; i < 10; i++) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
// 返回处理结果
handler.sendEmptyMessage(i);
}
}).start();
}
});
}
Handler handler = new Handler() {
@Override
public void handleMessage(Message msg) {
// 伪装更新 UI
Log.d(TAG, "Handle MSG = " + msg.what);
}
};
}复制代码
这是一种典型的处理方式,开一个子线程处理数据,经过 Android 中提供的 Handler 机制进行跨线程通信,把处理结果返回给主线程,进而更新 UI。这里咱们就是探讨 Handler 是如何把数据发送过去的。网络
到这里,咱们了解到的就是一个 Handler 的黑盒机制,子线程发送,主线程接收。接下来,咱们不介绍什么 ThreadLocal
、Looper
和 MessageQueue
。而是直接从上面的代码引出它们的存在,从原理了解它们存在的必要性,而后在谈它们内部存在的细节。app
一切罪恶源于 handler.sendEmptyMessage();
,最终找到如下函数 sendMessageAtTime(Message msg, long uptimeMillis)
:less
Handler.class
/** * Enqueue a message into the message queue after all pending messages * before the absolute time (in milliseconds) <var>uptimeMillis</var>. * <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b> * Time spent in deep sleep will add an additional delay to execution. * You will receive it in {@link #handleMessage}, in the thread attached * to this handler. * * @param uptimeMillis The absolute time at which the message should be * delivered, using the * {@link android.os.SystemClock#uptimeMillis} time-base. * * @return Returns true if the message was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. Note that a * result of true does not mean the message will be processed -- if * the looper is quit before the delivery time of the message * occurs then the message will be dropped. */
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}复制代码
MessageQueue
出来了,咱们避免不了了。里面主要是 Message next()
和 enqueueMessage(Message msg, long when)
方法值得研究,可是如今还不是时候。async
从 MessageQueue queue = mQueue;
中能够看出咱们的 handler
对象里面包含一个 mQueue 对象。至于里面存的什么怎么初始化的如今也不用太关心。大概有个概念就是这是个消息队列,存的是消息就行,具体实现细节后面会慢慢水落石出。
后面的代码就是说若是 queue 为空则打印 log 返回 false;不然执行 enqueueMessage(queue, msg, uptimeMillis);
入队。那就好理解了,handler 发送信息实际上是直接把信息封装进一个消息队列。ide
Handler.class
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}复制代码
这里涉及 Message,先说下这个类的三个成员变量:函数
/*package*/ Handler target;
/*package*/ Runnable callback;
/*package*/ Message next;复制代码
因此 msg.target = this;
把当前 handler 传给了 msg。
中间的 if 代码先忽略,先走主线:执行了 MessageQueue
的 enqueueMessage(msg, uptimeMillis);
方法。接着看源码
MessageQueue.class
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}复制代码
代码有点长,不影响主线的小细节就不介绍了,那些也很容易看懂的,可是原理仍是值得分析。if (mQuitting)...
,直接看看源码初始化赋值的函数是在 void quit(boolean safe)
函数里面,这里猜想多是退出消息轮训,消息轮训的退出方式也是值得深究,不过这里不影响主线就不看了。 msg.markInUse(); msg.when = when;
标记消息在用并且继续填充 msg,下面就是看注释了。咱们前面介绍的 Message 成员变量 next 就起做用了,把 msg 链在一块儿了。因此这里的核心就是把 msg 以一种链表形式插进去。彷佛这一波分析结束了,在这里划张图总结下:
OK,消息是存进去了,并且也是在 handler 所在的线程中。那么到底怎么取出信息呢?也就是前面小例子
Handler handler = new Handler() {
@Override
public void handleMessage(Message msg) {
// 伪装更新 UI
Log.d(TAG, "Handle MSG = " + msg.what);
}
};复制代码
handleMessage()
何时调用?这里基本断了线索。可是若是你以前哪怕看过相似的一篇文章应该都知道其实在 Android 启动时 main 函数就作了一些操做。这些操做是必要的,这也就是为何咱们不能直接在子线程中 new Handler();
。
public static void main(String[] args) {
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
SamplingProfilerIntegration.start();
// CloseGuard defaults to true and can be quite spammy. We
// disable it here, but selectively enable it later (via
// StrictMode) on debug builds, but using DropBox, not logs.
CloseGuard.setEnabled(false);
Environment.initForCurrentUser();
// Set the reporter for event logging in libcore
EventLogger.setReporter(new EventLoggingReporter());
// Make sure TrustedCertificateStore looks in the right place for CA certificates
final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
TrustedCertificateStore.setDefaultUserDirectory(configDir);
Process.setArgV0("<pre-initialized>");
Looper.prepareMainLooper(); // -------1
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler(); // -------2
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
Looper.loop(); // -------3
throw new RuntimeException("Main thread loop unexpectedly exited");
}复制代码
能够看出这里在获取 sMainThreadHandler 以前进行了 Looper.prepareMainLooper();
操做,以后进行了 Looper.loop();
操做。
下面开始分析:
Loopr.class
/** Initialize the current thread as a looper. * This gives you a chance to create handlers that then reference * this looper, before actually starting the loop. Be sure to call * {@link #loop()} after calling this method, and end it by calling * {@link #quit()}. */
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
/** * Initialize the current thread as a looper, marking it as an * application's main looper. The main looper for your application * is created by the Android environment, so you should never need * to call this function yourself. See also: {@link #prepare()} */
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
/** * Return the Looper object associated with the current thread. Returns * null if the calling thread is not associated with a Looper. */
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}复制代码
前两个方法是在本身建立 Looper 的时候用,第三个是主线程本身用的。因为这里消息传递以主线程为线索。prepare(false);
说明了这是主线程,在 sThreadLocal.set(new Looper(quitAllowed));
中的 quitAllowed
为 false 则说明主线程的 MessageQueue 轮训不能 quit。这句代码里还有 ThreadLocal 的 set() 方法。先不深究实现,容易晕,这里须要知道的就是把一个 Looper 对象“放进”了 ThreadLocal,换句话说,经过 ThreadLocal 能够获取不一样的 Looper。
最后的 sThreadLocal.get();
展现了 get 方法。说明到这时 Looper 已经存在啦。
如今看看 Looper 类的成员变量吧!
Looper.class
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
private static Looper sMainLooper; // guarded by Looper.class
final MessageQueue mQueue;
final Thread mThread;复制代码
在这里先介绍一下 ThreadLocal 的上帝视角吧。直接源码,能够猜想这是经过一个 ThreadLocalMap
的内部类对线程进行一种 map。传进来的泛型 T 正是咱们的 looper。因此 ThreadLocal 能够根据当前线程查找该线程的 Looper,具体怎么查找推荐看源码,这里就不介绍了。
/**
* Returns the value in the current thread's copy of this
* thread-local variable. If the variable has no value for the
* current thread, it is first initialized to the value returned
* by an invocation of the {@link #initialValue} method.
*
* @return the current thread's value of this thread-local
*/
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null)
return (T)e.value;
}
return setInitialValue();
}
* Sets the current thread's copy of this thread-local variable
* to the specified value. Most subclasses will have no need to
* override this method, relying solely on the {@link #initialValue}
* method to set the values of thread-locals.
*
* @param value the value to be stored in the current thread's copy of
* this thread-local.
*/
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}复制代码
分析到这里,handler 和 looper 都有了,可是消息仍是没有取出来?
这是看第三句 Looper.loop();
。
Looper.class
/** * Run the message queue in this thread. Be sure to call * {@link #quit()} to end the loop. */
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long traceTag = me.mTraceTag;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
try {
msg.target.dispatchMessage(msg);
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}复制代码
一开始也是获取 Looper,可是那么多 Looper 怎么知道这是哪一个 Looper 呢?这先放着待会立刻解释。把 loop() 函数主要功能搞懂再说。
接下来就是获取 Looper 中的 MessageQueue了,等等,这里提出一个疑问,前面说了 Handler 中也存在 MessageQueue,那这之间存在什么关系吗?(最后你会发现实际上是同一个)
先往下看,一个死循环,也就是轮训消息喽,中间有一句 msg.target.dispatchMessage(msg);
而前面介绍 msg.target 是 handler 型参数。因此和 handler 联系上了。
Handler.class
/** * Handle system messages here. */
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}复制代码
逻辑很简单,总之就是调动了咱们重写的 handleMessage() 方法。
Step 1:Looper.prepare();
在 Looper 中有一个静态变量 sThreadLocal,把建立的 looper “存在” 里面,建立 looper 的同时建立 MessageQueue,而且和当前线程挂钩。
Step 2:new Handler();
经过上帝 ThreadLocal,并根据当前线程,可获取 looper,进而获取 MessageQueue,Callback之类的。
```java
Handler.class
/**
- Use the {@link Looper} for the current thread with the specified callback interface
- and set whether the handler should be asynchronous.
*- Handlers are synchronous by default unless this constructor is used to make
- one that is strictly asynchronous.
*- Asynchronous messages represent interrupts or events that do not require global ordering
- with respect to synchronous messages. Asynchronous messages are not subject to
- the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
*- @param callback The callback interface in which to handle messages, or null.
- @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
- each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
*- @hide
*/
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {final Class<? extends Handler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); }复制代码
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue; // 前面的两个 MessageQueue 联系起来了,疑问已解答。
mCallback = callback;
mAsynchronous = async;复制代码
}`` 这个函数能够说明在 new Handler() 以前该线程必需有 looper,因此要在这以前调用
Looper.prepare();`。
Step 3:Looper.loop();
进行消息循环。
基本到这里整个过程应该是清楚了,这里我画下个人理解。
那么咱们如今来看一下 handler 是怎么准确发送信息和处理信息的。注意在 handler 发送信息以前,一、二、3 步已经完成。因此该获取的线程已经获取,直接往该线程所在的 MessageQueue 里面塞信息就好了,反正该信息会在该 handler 所在线程的 looper 中循环,最终会经过消息的 target 参数调用 dispatchMessage(),而在 dispatchMessage() 中会调用咱们重写的 handleMessage() 函数。
多谢阅读