来源:http://www.codesoso.net/Record/101092_95120_21.htmlhtml
来源:http://www.cnblogs.com/oomusou/archive/2011/06/05/fsm_coding_style.html架构
Moore FSM架构ide
通常在写FSM时,会以Moore FSM为主,因此先讨论Moore。由上图可知,Moore FSM内部由3个block所构成:Next state logic,State register与Output logic。spa
Next state logic:纯粹的组合逻辑,以整个module的input与目前的state为输入,目的在产生下一个state值存入state register。.net
State register:由D-FF所构成,将Next state logic所产生的state存入register。设计
Output logic:纯粹的组合逻辑,根据目前的state产生整个module的output。code
因此能够发现,整个Moore FSM事实上是由2块的组合逻辑与1块D-FF所构成,咱们常听到所谓的一段式、二段式与三段式FSM,事实上就是由这3个block排列组合而成。htm
Moore FSM各类coding style比较blog
Moore FSM各类coding style比较ip
为了要实际比较各类coding style,在此举一个简单的例子,若input w_i为连续2个clk为high,则output会在下1个clk产生周期为1 T的high pulse,timing diagram以下图所示。
所以设计了Moore FSM,state diagram如上图所示,接下来要作的就是用各类coding style来实现这个Moore FSM。
simple_fsm_moore_3_always_best.v / Verilog
1 /* 2 (C) OOMusou 2011 http://oomusou.cnblogs.com 3 4 Filename : simple_fsm_moore_3_always_best.v 5 Synthesizer : Quartus II 8.1 6 Description : 3 always block for moore fsm (BEST) 7 Release : Jun.05,2011 1.0 8 */ 9 10 module simple_fsm ( 11 clk, 12 rst_n, 13 w_i, 14 z_o 15 ); 16 17 input clk; 18 input rst_n; 19 input w_i; 20 output z_o; 21 22 parameter IDLE = 2'b00; 23 parameter S0 = 2'b01; 24 parameter S1 = 2'b10; 25 26 reg [1:0] curr_state; 27 reg [1:0] next_state; 28 reg z_o; 29 30 // state reg 31 always@(posedge clk or negedge rst_n) 32 if (~rst_n) curr_state <= IDLE; 33 else curr_state <= next_state; 34 35 // next state logic 36 always@(*) 37 case (curr_state) 38 IDLE : if (w_i) next_state = S0; 39 else next_state = IDLE; 40 S0 : if (w_i) next_state = S1; 41 else next_state = IDLE; 42 S1 : if (w_i) next_state = S1; 43 else next_state = IDLE; 44 default : next_state = IDLE; 45 endcase 46 47 // output logic 48 always@(*) 49 case (curr_state) 50 IDLE : z_o = 1'b0; 51 S0 : z_o = 1'b0; 52 S1 : z_o = 1'b1; 53 default : z_o = 1'b0; 54 endcase 55 56 endmodule
個always是一個推薦的寫法。
Testbench
simple_fsm_tb.v / Verilog
1 /* 2 (C) OOMusou 2011 http://oomusou.cnblogs.com 3 4 Filename : simple_fsm_tb.v 5 Simulator : ModelSim SE 6.3e + Debussy 5.4 v9 6 Description : testbench for FSM 7 Release : Jun.05,2011 1.0 8 */ 9 10 module simple_fsm_tb; 11 12 reg clk = 1'b1; 13 reg rst_n = 1'b1; 14 reg w_i = 1'b0; 15 wire z_o; 16 17 // clk 18 always #10 clk = ~clk; 19 20 event after_rst; 21 22 // rst_n 23 initial begin 24 #6; // 6ns 25 rst_n = 1'b0; 26 #30; // 36ns 27 rst_n = 1'b1; 28 ->after_rst; 29 end 30 31 // w_i 32 initial begin 33 @(after_rst); 34 repeat(2)@(posedge clk); // 60ns 35 w_i <= 1'b1; 36 @(posedge clk); // 80 ns 37 w_i <= 1'b0; 38 @(posedge clk); // 100 ns 39 w_i <= 1'b1; 40 repeat(2)@(posedge clk); // 140 ns 41 w_i <= 1'b0; 42 @(posedge clk); // 160 ns 43 w_i <= 1'b1; 44 repeat(3)@(posedge clk); // 220 ns 45 w_i <= 1'b0; 46 end 47 48 initial begin 49 $fsdbDumpfile("simple_fsm.fsdb"); 50 $fsdbDumpvars(0, simple_fsm_tb); 51 end 52 53 simple_fsm u_simple_fsm ( 54 .clk (clk), 55 .rst_n (rst_n), 56 .w_i (w_i), 57 .z_o (z_o) 58 ); 59 60 endmodule
1 /* 2 (C) OOMusou 2011 http://oomusou.cnblogs.com 3 4 Filename : simple_fsm_moore_3_always_best.v 5 Synthesizer : Quartus II 8.1 6 Description : 3 always block for moore fsm (BEST) 7 Release : Jun.05,2011 1.0 8 */ 9 10 module simple_fsm ( 11 clk, 12 rst_n, 13 w_i, 14 z_o 15 ); 16 17 input clk; 18 input rst_n; 19 input w_i; 20 output z_o; 21 22 parameter IDLE = 2'b00; 23 parameter S0 = 2'b01; 24 parameter S1 = 2'b10; 25 26 reg [1:0] curr_state; 27 reg [1:0] next_state; 28 reg z_o; 29 30 // state reg 31 always@(posedge clk or negedge rst_n) 32 if (~rst_n) curr_state <= IDLE; 33 else curr_state <= next_state; 34 35 // next state logic 36 always@(*) 37 case (curr_state) 38 IDLE : if (w_i) next_state = S0; 39 else next_state = IDLE; 40 S0 : if (w_i) next_state = S1; 41 else next_state = IDLE; 42 S1 : if (w_i) next_state = S1; 43 else next_state = IDLE; 44 default : next_state = IDLE; 45 endcase 46 47 // output logic 48 always@(*) 49 case (curr_state) 50 IDLE : z_o = 1'b0; 51 S0 : z_o = 1'b0; 52 S1 : z_o = 1'b1; 53 default : z_o = 1'b0; 54 endcase 55 56 endmodule
simple_fsm_moore_3_always_best.v / Verilog
1 /* 2 (C) OOMusou 2011 http://oomusou.cnblogs.com 3 4 Filename : simple_fsm_tb.v 5 Simulator : ModelSim SE 6.3e + Debussy 5.4 v9 6 Description : testbench for FSM 7 Release : Jun.05,2011 1.0 8 */ 9 10 module simple_fsm_tb; 11 12 reg clk = 1'b1; 13 reg rst_n = 1'b1; 14 reg w_i = 1'b0; 15 wire z_o; 16 17 // clk 18 always #10 clk = ~clk; 19 20 event after_rst; 21 22 // rst_n 23 initial begin 24 #6; // 6ns 25 rst_n = 1'b0; 26 #30; // 36ns 27 rst_n = 1'b1; 28 ->after_rst; 29 end 30 31 // w_i 32 initial begin 33 @(after_rst); 34 repeat(2)@(posedge clk); // 60ns 35 w_i <= 1'b1; 36 @(posedge clk); // 80 ns 37 w_i <= 1'b0; 38 @(posedge clk); // 100 ns 39 w_i <= 1'b1; 40 repeat(2)@(posedge clk); // 140 ns 41 w_i <= 1'b0; 42 @(posedge clk); // 160 ns 43 w_i <= 1'b1; 44 repeat(3)@(posedge clk); // 220 ns 45 w_i <= 1'b0; 46 end 47 48 initial begin 49 $fsdbDumpfile("simple_fsm.fsdb"); 50 $fsdbDumpvars(0, simple_fsm_tb); 51 end 52 53 simple_fsm u_simple_fsm ( 54 .clk (clk), 55 .rst_n (rst_n), 56 .w_i (w_i), 57 .z_o (z_o) 58 ); 59 60 endmodule
1.使用3个always (三段式)
使用1个always描述state register,由于是D-FF且含clk,因此使用nonblocking。
因为state register区块并不包含任何逻辑,因此不会由于不一样FSM而有不一样写法,不一样FSM只会改变next state logic与output logic的写法。
使用1个always描述output logic,由于是纯粹组合逻辑,因此使用blocking。
根据Moore FSM架构图所示,output logic的结果只与目前state有关,因此只需用case对state作一次分类便可。
使用3个always写法有几个优势:
1.可忠实地反映出本来的Moore FSM硬件架构
2.可轻易地将state diagram改用Verilog表示
3.将Next state logic与output logic分开,可下降code的复杂度,便于往后维护。
Mealy FSM架构
谈完了Moore FSM,接下来谈Mealy FSM,与Moore FSM的差异只在于Moore FSM的output logic只由目前state决定,可是Mealy FSM可由目前state与input共同决定。
将以前的例子用Mealy FSM从新改写,本来在Moore FSM下,若input w_i为连续2个clk为high,则output会在下1个clk产生周期为1 T的high pulse,若改用Mealy FSM,则output会提前1个clk出现,以下图所示。
本来Moore FSM须要3个state,若改用Mealy FSM后,会只剩下2个state,接下来要用各类coding style来实现Mealy FSM。
1.使用3个always (三段式)
simple_fsm_mealy_3_always_best.v / Verilog
以前提到使用Mealy FSM会少Moore FSM 1个state,且output会早Moore FSM 1个clk,因此最后特别将output在敲一级delay 1个clk,这样Mealy FSM就会彻底与Moore FSM同样。
使用3个always写法有几个优势:
1.可忠实地反映出本来的Mealy FSM硬件架构
2.可轻易地将state diagram改用Verilog表示
3.将Next state logic与output logic分开,可下降code的复杂度,便于往后维护
1 /* 2 (C) OOMusou 2011 http://oomusou.cnblogs.com 3 4 Filename : simple_fsm_mealy_3_always_best.v 5 Synthesizer : Quartus II 8.1 6 Description : 3 always block for mealy fsm (BEST) 7 Release : Jun.05,2011 1.0 8 */ 9 10 module simple_fsm ( 11 clk, 12 rst_n, 13 w_i, 14 z_o 15 ); 16 17 input clk; 18 input rst_n; 19 input w_i; 20 output z_o; 21 22 parameter IDLE = 2'b00; 23 parameter S0 = 2'b01; 24 25 reg [1:0] curr_state; 26 reg [1:0] next_state; 27 reg z; 28 reg z_o; 29 30 // state reg 31 always@(posedge clk or negedge rst_n) 32 if (~rst_n) curr_state <= IDLE; 33 else curr_state <= next_state; 34 35 // next state logic 36 always@(*) 37 case (curr_state) 38 IDLE : if (w_i) next_state = S0; 39 else next_state = IDLE; 40 S0 : if (w_i) next_state = S0; 41 else next_state = IDLE; 42 default : next_state = IDLE; 43 endcase 44 45 // output logic 46 always@(*) 47 case (curr_state) 48 IDLE : if (w_i) z = 1'b0; 49 else z = 1'b0; 50 S0 : if (w_i) z = 1'b1; 51 else z = 1'b0; 52 default : z = 1'b0; 53 endcase 54 55 // mealy output to delay 1 clk for moore 56 always@(posedge clk or negedge rst_n) 57 if (~rst_n) z_o <= 1'b0; 58 else z_o <= z; 59 60 endmodule
Conclusion
1.3个always与2个always (state register与next state logic合一)是两种推荐的写法,并且这两种写法不管要描述Moore FSM或者Mealy FSM都没问题,其余写法都不推荐,我的是比较喜欢2个always写法(state register + next state logic),由于这种写法最精简,各类需求均可描述,也不用担忧是否要提早一个clk判断,最为直觉不易错。
2.实务上不会特别拘泥使用Moore或者Mealy,只要符合需求便可,通常会以Moore FSM为正宗。
3.实务上为了timing更好,会在Moore FSM的output logic多敲一级。
4.Mealy会比Moore少1个state,且output会比Moore早1个clk。
5.Moore与Mealy之间能够互换,只要在Mealy的output多敲一级便可。