【web自动化测试】requests-html 这个解析库,能让你更轻松的获取网页内容

1. 开始

Python 中能够进行网页解析的库有不少,常见的有 BeautifulSoup 和 lxml 等。在网上玩爬虫的文章一般都是介绍 BeautifulSoup 这个库,我日常也是经常使用这个库,最近用 Xpath 用得比较多,使用 BeautifulSoup 就不大习惯,好久以前就知道 Reitz 大神出了一个叫 Requests-HTML 的库,一直没有兴趣看,这回可算歹着机会用一下了。css

使用 pip install requests-html安装,上手和 Reitz 的其余库同样,轻松简单:html

 from requests_html import HTMLSession
 session = HTMLSession()
 
 r = session.get('https://www.python.org/jobs/')

这个库是在 requests 库上实现的,r 获得的结果是 Response 对象下面的一个子类,多个一个 html 的属性。因此 requests 库的响应对象能够进行什么操做,这个 r 也均可以。若是须要解析网页,直接获取响应对象的 html 属性:python

 r.html

2. 原理

不得不膜拜 Reitz 大神太会组装技术了。实际上 HTMLSession 是继承自 requests.Session 这个核心类,而后将 requests.Session 类里的 requests 方法改写,返回本身的一个 HTMLResponse 对象,这个类又是继承自 requests.Response,只是多加了一个 _from_response 的方法来构造实例:git

 class HTMLSession(requests.Session):
     # 重写 request 方法,返回 HTMLResponse 构造
     def request(self, *args, **kwargs) -> HTMLResponse:
         r = super(HTMLSession, self).request(*args, **kwargs)
         return HTMLResponse._from_response(r, self)
 class HTMLResponse(requests.Response):
  # 构造器
     @classmethod
     def _from_response(cls, response, session: Union['HTMLSession', 'AsyncHTMLSession']):
         html_r = cls(session=session)
         html_r.__dict__.update(response.__dict__)
         return html_r

以后在 HTMLResponse 里定义属性方法 html,就能够经过 html 属性访问了,实现也就是组装 PyQuery 来干。核心的解析类也大可能是使用 PyQuery 和 lxml 来作解析,简化了名称,挺讨巧的。github

3. 元素定位

元素定位能够选择两种方式:web

css 选择器

  • css选择器api

  • xpathsession

 # css 获取有多少个职位
 jobs = r.html.find("h1.call-to-action")
 # xpath 获取
 jobs = r.html.xpath("//h1[@class='call-to-action']")

方法名很是简单,符合 Python 优雅的风格,这里不妨对这两种方式简单的说明:异步

4. CSS 简单规则

  • 标签名 h1ide

  • id 使用 #id 表示

  • class 使用 .class_name 表示

  • 谓语表示:h1[prop=value]

5. Xpath简单规则

  • 路径 // 或者 /

  • 标签名

  • 谓语 [@prop=value]

  • 轴定位 名称::元素名[谓语]

定位到元素之后势必要获取元素里面的内容和属性相关数据,获取文本:

 jobs.text
 jobs.full_text

获取元素的属性:

 attrs = jobs.attrs
 value = attrs.get("key")

还能够经过模式来匹配对应的内容:

 ## 找某些内容匹配
 r.html.search("Python {}")
 r.html.search_all()

这个功能看起来比较鸡肋,能够深刻研究优化一下,说不定能在 github 上混个提交。

6. 人性化操做

除了一些基础操做,这个库还提供了一些人性化的操做。好比一键获取网页的全部超连接,这对于整站爬虫应该是个福音,URL 管理比较方便:

 r.html.absolute_links
 r.html.links
 

内容页面一般都是分页的,一次抓取不了太多,这个库能够获取分页信息:

 print(r.html)
 # 比较一下
 for url in r.html:
     print(url)
 

结果以下:

 # print(r.html)
 <HTML url='https://www.python.org/jobs/'>
 # for
 <HTML url='https://www.python.org/jobs/'>
 <HTML url='https://www.python.org/jobs/?page=2'>
 <HTML url='https://www.python.org/jobs/?page=3'>
 <HTML url='https://www.python.org/jobs/?page=4'>
 <HTML url='https://www.python.org/jobs/?page=5'>
 

经过迭代器实现了智能发现分页,这个迭代器里面会用一个叫 _next 的方法,贴一段源码感觉下:

 def get_next():
  candidates = self.find('a', containing=next_symbol)
 
  for candidate in candidates:
  if candidate.attrs.get('href'):
  # Support 'next' rel (e.g. reddit).
  if 'next' in candidate.attrs.get('rel', []):
  return candidate.attrs['href']
 

经过查找 a 标签里面是否含有指定的文原本判断是否是有下一页,一般咱们的下一页都会经过 下一页 或者 加载更多 来引导,他就是利用这个标志来进行判断。默认的以列表形式存在全局:['next', 'more', 'older']。我我的认为这种方式很是不灵活,几乎没有扩展性。感兴趣的能够往 github 上提交代码优化。

7. 加载 js

也许是考虑到了如今 js 的一些异步加载,这个库支持 js 运行时,官方说明以下:

Reloads the response in Chromium, and replaces HTML content with an updated version, with JavaScript executed.

使用很是简单,直接调用如下方法:

 r.html.render()
 

第一次使用的时候会下载 Chromium,不过国内你懂的,本身想办法去下吧,就不要等它本身下载了。render 函数可使用 js 脚原本操做页面,滚动操做单独作了参数。这对于上拉加载等新式页面是很是友好的。

8. 总结

Reitz 大神设计出来的东西仍是一如既往的简单好用,本身很少作,大多用别人的东西组装,简化 api。真是够人性。不过有的地方仍是优化空间,但愿有兴趣和精力的童鞋去 github 上关注一下这个项目。

相关文章
相关标签/搜索