深刻理解Go-逃逸分析

How do I know whether a variable is allocated on the heap or the stack?

From a correctness standpoint, you don't need to know. Each variable in Go exists as long as there are references to it. The storage location chosen by the implementation is irrelevant to the semantics of the language.git

The storage location does have an effect on writing efficient programs. When possible, the Go compilers will allocate variables that are local to a function in that function's stack frame. However, if the compiler cannot prove that the variable is not referenced after the function returns, then the compiler must allocate the variable on the garbage-collected heap to avoid dangling pointer errors. Also, if a local variable is very large, it might make more sense to store it on the heap rather than the stack.github

In the current compilers, if a variable has its address taken, that variable is a candidate for allocation on the heap. However, a basic escape analysis recognizes some cases when such variables will not live past the return from the function and can reside on the stack.编程

在Go里面定义了一个变量,究竟是分配在堆上仍是栈上,Go官方文档告诉咱们,不须要管,他们会分析,其实这个分析就是逃逸分析闭包

在编程语言的编译优化原理中,分析指针动态范围的方法称之为逃逸分析。通俗来说,当一个对象的指针被多个方法或线程引用时,咱们称这个指针发生了逃逸。编程语言

发生逃逸行为的状况主要有两种:ide

  • 方法逃逸:当一个对象在方法中定义以后,做为参数传递或返回值到其它方法中
  • 线程逃逸:如类变量或实例变量,可能被其它线程访问到

这里主要对 方法逃逸 进行分析,经过逃逸分析来判断一个变量究竟是分配在堆上仍是栈上函数

逃逸策略

  • 若是编译器不能证实某个变量在函数返回后再也不被引用,则分配在堆上
  • 若是一个变量过大,则有可能分配在堆上

分析目的

  • 不逃逸的对象分配在栈上,则变量在用完后就会被编译器回收,从而减小GC的压力
  • 栈上的分配要比堆上的分配更加高效
  • 同步消除,若是定义的对象上有同步锁,可是栈在运行时只有一个线程访问,逃逸分析后若是在栈上则会将同步锁去除

逃逸场景

指针逃逸

在 build 的时候,经过添加 -gcflags "-m" 编译参数就能够查看编译过程当中的逃逸分析

在有些时候,由于变量太大等缘由,咱们会选择返回变量的指针,而非变量,这里其实就是逃逸的一个经典现象post

func main() {
    test()
}

func test() *int {
    i := 1
    return &i
}

逃逸分析结果:优化

# command-line-arguments
./main.go:7:6: can inline test
./main.go:3:6: can inline main
./main.go:4:6: inlining call to test
./main.go:4:6: main &i does not escape
./main.go:9:9: &i escapes to heap
./main.go:8:2: moved to heap: i

能够看到最后两行指出,变量 i 逃逸到了 heapui

栈空间不足逃逸

首先,咱们尝试建立一个 长度较小的 slice

func main() {
    stack()
}

func stack() {
    s := make([]int, 10, 10)
    s[0] = 1
}

逃逸分析结果:

./main.go:12:6: can inline stack
./main.go:3:6: can inline main
./main.go:4:7: inlining call to stack
./main.go:4:7: main make([]int, 10, 10) does not escape
./main.go:13:11: stack make([]int, 10, 10) does not escape

结果显示未逃逸

而后,咱们建立一个超大的slice

func main() {
    stack()
}

func stack() {
    s := make([]int, 100000, 100000)
    s[0] = 1
}

逃逸分析结果:

./main.go:12:6: can inline stack
./main.go:3:6: can inline main
./main.go:4:7: inlining call to stack
./main.go:4:7: make([]int, 100000, 100000) escapes to heap
./main.go:13:11: make([]int, 100000, 100000) escapes to heap

这时候就逃逸到了堆上了

动态类型逃逸

func main() {
    dynamic()
}

func dynamic() interface{} {
    i := 0
    return i
}

逃逸分析结果:

./main.go:18:6: can inline dynamic
./main.go:3:6: can inline main
./main.go:5:9: inlining call to dynamic
./main.go:5:9: main i does not escape
./main.go:20:2: i escapes to heap

这里的动态类型逃逸,其实在理解了interface{}的内部结构后,仍是能够归并到 指针逃逸 这一类的,有兴趣的同窗能够看一下 《深刻理解Go的interface》

闭包引用逃逸

func main() {
    f := fibonacci()
    for i := 0; i < 10; i++ {
        f()
    }
}
func fibonacci() func() int {
    a, b := 0, 1
    return func() int {
        a, b = b, a+b
        return a
    }
}

逃逸分析结果:

./main.go:11:9: can inline fibonacci.func1
./main.go:11:9: func literal escapes to heap
./main.go:11:9: func literal escapes to heap
./main.go:12:10: &b escapes to heap
./main.go:10:5: moved to heap: b
./main.go:12:13: &a escapes to heap
./main.go:10:2: moved to heap: a

参考

《Go 逃逸分析》

相关文章
相关标签/搜索