正规式到正规文法3d
对任意正规式R选择一个非终结符Z生成规则Z→Rblog
1.对形如A→ab的规则,转换成A→aB,B→bim
2.将形如A→a|b的规则,转换成A→a,A→b(A→a|b)d3
3.将形如A→a*b的规则,转换成A→aA,A→bdb
将形如A→ba*的规则,转换成A→Aa,A→bimg
不断利用上述规则进行转换,直到每条规则最多含有一个终结符为止.co
(1)1(0|1)*101d3
S → A1生成
A → B0ps
B → C1
C → 1(0 | 1)*
→ 1 | C0 | C1
1(0 | 1)* 101
S → 1(0 | 1)* 10
S → 1
(2)(a|b)*(aa|bb)(a|b)*
S → (a | b) S
S → (aa | bb)(a | b)*
S → S(a | b)
S → aa | bb
S → aS | bS | Sa | Sb | aA | aB
A → a
B → b
(3)((0|1)*|(11))*
S → ((0 | 1)* | (11))S | ε
S → (0 | 1)*S | 11S | ε
S → (0 | 1)S
S → 0S | 1S | 11S | ε
(4)(0|11*0)*
S → (0 | 11*0)* | ε
S → (0 | 11*0)S
S → 0S | (11*0)S
S → (11*0)S
S → 11*0
S → (11*)S
S → 0
S → 11*
S → S1
S → 0S | S1 | 0 | ε
2.自动机M=({q0,q1,q2,q3},{0,1},f,q0,{q3})
其中f:
(q0,0)=q1
(q1,0)=q2
(q2,0)=q3
(q0,1)=q0
(q1,1)=q0
(q2,1)=q0
(q3,0)=q3
(q3,1)=q3
画现状态转换矩阵和状态转换图。
状态矩阵:
状态转换图:
3.由正规式R 构造 自动机NFA
(1)(a|b)*abb
(2)(a|b)*(aa|bb)(a|b)*
(3) 1(1010*|1(010)*1)*0