JavaShuo
栏目
标签
Bridging the Gap Between Detection and Tracking: A Unified Approach
时间 2020-12-26
标签
目标跟踪论文阅读
繁體版
原文
原文链接
文章目录 摘要 背景 贡献 本文方法 摘要 近年来,目标检测领域的算法和模型可以推广应用到跟踪领域,与目前大多数结合跟踪-检测的算法不同,本文的出发点不是设计一个新的跟踪-检测算法,而是提出一种通用框架,可以将任意目标检测网络移植到跟踪领域。 背景 本文提出将目标检测网络移植到跟踪领域是出于以下motivation的考虑:第一,检测算法在复杂场景下可以精确区分不同物体,将检测网络应用到跟踪领域可能
>>阅读原文<<
相关文章
1.
Bridging the Gap Between Detection and Tracking: A Unified Approach
2.
解读《Bridging the Gap Between Anchor-based and Anchor-free Detection》
3.
目标检测论文: Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample
4.
[目标检测]Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample S
5.
Bridging the Gap Between Anchor-based and Anchor-free Detection via ATSS论文阅读 - CVPR2020 oral
6.
Bridging the Gap Between Relevance Matching and Semantic Matching for Short Text Similarity Modeling
7.
Bridging the Gap between Training and Inference for Neural Machine Translation翻译
8.
Tracking by Instance Detection: A Meta-Learning Approach
9.
目标检测论文阅读:Bridging the Gap Between Anchor-based and Anchor-free
10.
2020CVPR论文解读之ATSS:Bridging the Gap Between Anchor-based and Anchor-free Detection
更多相关文章...
•
SQL BETWEEN 操作符
-
SQL 教程
•
XSL-FO table-and-caption 对象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
为了进字节跳动,我精选了29道Java经典算法题,带详细讲解
相关标签/搜索
between...and
bridging
unified
gap
approach
detection
tracking
a'+'a
Eye-Tracking
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Duang!超快Wi-Fi来袭
2.
机器学习-补充03 神经网络之**函数(Activation Function)
3.
git上开源maven项目部署 多module maven项目(多module maven+redis+tomcat+mysql)后台部署流程学习记录
4.
ecliple-tomcat部署maven项目方式之一
5.
eclipse新导入的项目经常可以看到“XX cannot be resolved to a type”的报错信息
6.
Spark RDD的依赖于DAG的工作原理
7.
VMware安装CentOS-8教程详解
8.
YDOOK:Java 项目 Spring 项目导入基本四大 jar 包 导入依赖,怎样在 IDEA 的项目结构中导入 jar 包 导入依赖
9.
简单方法使得putty(windows10上)可以免密登录树莓派
10.
idea怎么用本地maven
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Bridging the Gap Between Detection and Tracking: A Unified Approach
2.
解读《Bridging the Gap Between Anchor-based and Anchor-free Detection》
3.
目标检测论文: Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample
4.
[目标检测]Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample S
5.
Bridging the Gap Between Anchor-based and Anchor-free Detection via ATSS论文阅读 - CVPR2020 oral
6.
Bridging the Gap Between Relevance Matching and Semantic Matching for Short Text Similarity Modeling
7.
Bridging the Gap between Training and Inference for Neural Machine Translation翻译
8.
Tracking by Instance Detection: A Meta-Learning Approach
9.
目标检测论文阅读:Bridging the Gap Between Anchor-based and Anchor-free
10.
2020CVPR论文解读之ATSS:Bridging the Gap Between Anchor-based and Anchor-free Detection
>>更多相关文章<<