已经不记得最先接触到 Disruptor 是何时了,只记得发现它的时候它是以具备闪电般的速度被介绍的。因而在脑子里, Disruptor 和“闪电”一词关联了起来,然而却一直没有时间去探究一下。java
最近正在进行一项对性能有很高要求的产品项目的研究,天然想起了闪电般的 Disruptor ,这必有它的用武之地,因而进行了一番探查,将成果和体会记录在案。git
1、什么是 Disruptor github
从功能上来看,Disruptor 是实现了“队列”的功能,并且是一个有界队列。那么它的应用场景天然就是“生产者-消费者”模型的应用场合了。算法
能够拿 JDK 的 BlockingQueue 作一个简单对比,以便更好地认识 Disruptor 是什么。缓存
咱们知道 BlockingQueue 是一个 FIFO 队列,生产者(Producer)往队列里发布(publish)一项事件(或称之为“消息”也能够)时,消费者(Consumer)能得到通知;若是没有事件时,消费者被堵塞,直到生产者发布了新的事件。安全
这些都是 Disruptor 能作到的,与之不一样的是,Disruptor 能作更多:架构
以上的描述虽然简单地指出了 Disruptor 是什么,但对于它“能作什么”还不是那么直截了当。通常性地来讲,当你须要在两个独立的处理过程(两个线程)之间交换数据时,就可使用 Disruptor 。固然使用队列(如上面提到的 BlockingQueue)也能够,只不过 Disruptor 作得更好。并发
拿队列来做比较的作法弱化了对 Disruptor 有多强大的认识,若是想要对此有更多的了解,能够仔细看看 Disruptor 在其东家 LMAX 交易平台(也是实现者) 是如何做为核心架构来使用的,这方面就不作详述了,问度娘或谷哥都能找到。异步
2、Disruptor 的核心概念ide
先从了解 Disruptor 的核心概念开始,来了解它是如何运做的。下面介绍的概念模型,既是领域对象,也是映射到代码实现上的核心对象。
3、如何使用 Disruptor
Disruptor 的 API 十分简单,主要有如下几个步骤:
public class LongEvent { private long value; public void set(long value) { this.value = value; } }
import com.lmax.disruptor.EventFactory; public class LongEventFactory implements EventFactory<LongEvent> { public LongEvent newInstance() { return new LongEvent(); } }
import com.lmax.disruptor.EventHandler; public class LongEventHandler implements EventHandler<LongEvent> { public void onEvent(LongEvent event, long sequence, boolean endOfBatch) { System.out.println("Event: " + event); } }
ExecutorService executor = Executors.newCachedThreadPool();
WaitStrategy BLOCKING_WAIT = new BlockingWaitStrategy(); WaitStrategy SLEEPING_WAIT = new SleepingWaitStrategy(); WaitStrategy YIELDING_WAIT = new YieldingWaitStrategy();
EventFactory<LongEvent> eventFactory = new LongEventFactory(); ExecutorService executor = Executors.newSingleThreadExecutor(); int ringBufferSize = 1024 * 1024; // RingBuffer 大小,必须是 2 的 N 次方; Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(eventFactory, ringBufferSize, executor, ProducerType.SINGLE, new YieldingWaitStrategy()); EventHandler<LongEvent> eventHandler = new LongEventHandler(); disruptor.handleEventsWith(eventHandler); disruptor.start();
// 发布事件; RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer(); long sequence = ringBuffer.next();//请求下一个事件序号; try { LongEvent event = ringBuffer.get(sequence);//获取该序号对应的事件对象; long data = getEventData();//获取要经过事件传递的业务数据; event.set(data); } finally{ ringBuffer.publish(sequence);//发布事件; }
注意,最后的 ringBuffer.publish 方法必须包含在 finally 中以确保必须获得调用;若是某个请求的 sequence 未被提交,将会堵塞后续的发布操做或者其它的 producer。
Disruptor 还提供另一种形式的调用来简化以上操做,并确保 publish 老是获得调用。static class Translator implements EventTranslatorOneArg<LongEvent, Long>{ @Override public void translateTo(LongEvent event, long sequence, Long data) { event.set(data); } } public static Translator TRANSLATOR = new Translator(); public static void publishEvent2(Disruptor<LongEvent> disruptor) { // 发布事件; RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer(); long data = getEventData();//获取要经过事件传递的业务数据; ringBuffer.publishEvent(TRANSLATOR, data); }
此外,Disruptor 要求 RingBuffer.publish 必须获得调用的潜台词就是,若是发生异常也同样要调用 publish ,那么,很显然这个时候须要调用者在事件处理的实现上来判断事件携带的数据是不是正确的或者完整的,这是实现者应该要注意的事情。
disruptor.shutdown();//关闭 disruptor,方法会堵塞,直至全部的事件都获得处理; executor.shutdown();//关闭 disruptor 使用的线程池;若是须要的话,必须手动关闭, disruptor 在 shutdown 时不会自动关闭;
4、性能对比测试
为了直观地感觉 Disruptor 有多快,设计了一个性能对比测试:Producer 发布 100 万次事件,从发布第一个事件开始计时,捕捉 Consumer 处理完全部事件的耗时。
测试用例在 Producer 如何将事件通知到 Consumer 的实现方式上,设计了三种不一样的实现:
这次测试用例仅作了只有一个 Producer 和一个 Consumer 的情形,测试用例的代码以下:
CounterTracer tracer = tracerFactory.newInstance(DATA_COUNT);//计数跟踪到达指定的数值; TestHandler handler = new TestHandler(tracer);//Consumer 的事件处理; EventPublisher publisher = publisherFactory.newInstance(new PublisherCreationArgs(DATA_COUNT, handler));//经过工厂对象建立不一样的 Producer 的实现; publisher.start(); tracer.start(); //发布事件; for (int i = 0; i < DATA_COUNT; i++) { publisher.publish(i); } //等待事件处理完成; tracer.waitForReached(); publisher.stop(); //输出结果; printResult(tracer);
事件处理的实现只是调用一个计数器(CounterTracer)加1,该计数器跟踪从开始到达到总的事件次数时所耗的时间。
public class TestHandler { private CounterTracer tracer; public TestHandler(CounterTracer tracer) { this.tracer = tracer; } /** * 若是返回 true,则表示处理已经所有完成,再也不处理后续事件; * * @param event * @return */ public boolean process(TestEvent event){ return tracer.count(); } }
针对单一Producer 和单一 Consumer 的测试场景,CounterTracer 的实现以下:
/** * 测试结果跟踪器,计数器不是线程安全的,仅在单线程的 consumer 测试中使用; * * @author haiq * */ public class SimpleTracer implements CounterTracer { private long startTicks; private long endTicks; private long count = 0; private boolean end = false; private final long expectedCount; private CountDownLatch latch = new CountDownLatch(1); public SimpleTracer(long expectedCount) { this.expectedCount = expectedCount; } @Override public void start() { startTicks = System.currentTimeMillis(); end = false; } @Override public long getMilliTimeSpan() { return endTicks - startTicks; } @Override public boolean count() { if (end) { return end; } count++; end = count >= expectedCount; if (end) { endTicks = System.currentTimeMillis(); latch.countDown(); } return end; } @Override public void waitForReached() throws InterruptedException { latch.await(); } }
第一种 Producer 的实现:直接触发事件处理;
public class DirectingPublisher implements EventPublisher { private TestHandler handler; private TestEvent event = new TestEvent(); public DirectingPublisher(TestHandler handler) { this.handler = handler; } @Override public void publish(int data) throws Exception { event.setValue(data); handler.process(event); } //省略其它代码; }
第二种 Producer 的实现:经过 ArrayBlockinigQueue 实现;
public class BlockingQueuePublisher implements EventPublisher { private ArrayBlockingQueue<TestEvent> queue ; private TestHandler handler; public BlockingQueuePublisher(int maxEventSize, TestHandler handler) { this.queue = new ArrayBlockingQueue<TestEvent>(maxEventSize); this.handler = handler; } public void start(){ Thread thrd = new Thread(new Runnable() { @Override public void run() { handle(); } }); thrd.start(); } private void handle(){ try { TestEvent evt ; while (true) { evt = queue.take(); if (evt != null && handler.process(evt)) { //完成后自动结束处理线程; break; } } } catch (InterruptedException e) { e.printStackTrace(); } } @Override public void publish(int data) throws Exception { TestEvent evt = new TestEvent(); evt.setValue(data); queue.put(evt); } //省略其它代码; }
第三种 Producer 的实现:经过 Disruptor 实现;
public class DisruptorPublisher implements EventPublisher { private class TestEventHandler implements EventHandler<TestEvent> { private TestHandler handler; public TestEventHandler(TestHandler handler) { this.handler = handler; } @Override public void onEvent(TestEvent event, long sequence, boolean endOfBatch) throws Exception { handler.process(event); } } private static final WaitStrategy YIELDING_WAIT = new YieldingWaitStrategy(); private Disruptor<TestEvent> disruptor; private TestEventHandler handler; private RingBuffer<TestEvent> ringbuffer; private ExecutorService executor; public DisruptorPublisher(int bufferSize, TestHandler handler) { this.handler = new TestEventHandler(handler); executor = Executors.newSingleThreadExecutor(); disruptor = new Disruptor<TestEvent>(EVENT_FACTORY, bufferSize, executor, ProducerType.SINGLE, YIELDING_WAIT); } @SuppressWarnings("unchecked") public void start() { disruptor.handleEventsWith(handler); disruptor.start(); ringbuffer = disruptor.getRingBuffer(); } @Override public void publish(int data) throws Exception { long seq = ringbuffer.next(); try { TestEvent evt = ringbuffer.get(seq); evt.setValue(data); } finally { ringbuffer.publish(seq); } } //省略其它代码; }
Producer 第一种实现并无线程间的交换,实际上就是直接调用计数器,所以以此种实现的测试结果做为基准,对比其它的两种实现的测试结果。
在个人CPU CORE i5 / 4G 内存 / Win7 64 位的笔记本上,数据量(DATA_COUNT)取值为 1024 * 1024 时的测试结果以下:
【基准测试】 [1]--每秒吞吐量:--;(1048576/0ms) [2]--每秒吞吐量:--;(1048576/0ms) [3]--每秒吞吐量:--;(1048576/0ms) [4]--每秒吞吐量:69905066;(1048576/15ms) [5]--每秒吞吐量:--;(1048576/0ms) 【对比测试1: ArrayBlockingQueue 实现】 [1]--每秒吞吐量:4788018;(1048576/219ms) [2]--每秒吞吐量:5165399;(1048576/203ms) [3]--每秒吞吐量:4809981;(1048576/218ms) [4]--每秒吞吐量:5165399;(1048576/203ms) [5]--每秒吞吐量:5577531;(1048576/188ms) 【对比测试2: Disruptor实现】 [1]--每秒吞吐量:33825032;(1048576/31ms) [2]--每秒吞吐量:65536000;(1048576/16ms) [3]--每秒吞吐量:65536000;(1048576/16ms) [4]--每秒吞吐量:69905066;(1048576/15ms) [5]--每秒吞吐量:33825032;(1048576/31ms)
从测试结果看, Disruptor 的性能比 ArrayBlockingQueue 高出了几乎一个数量级,操做耗时也只有平均20毫秒左右。
因为篇幅有限,关于 Disruptor 实现高性能的原理,留待之后再作探讨。
6、参考资料