因为centos6.x中的gcc版本老旧,不支持c++11因此要安装gcc4.8.5,如下是安装教程。参考CentOS 6.4 编译安装 gcc-4.8.0
解压安装包进入目录执行download_prerequisites脚本./contrib/download_prerequisites
新建buildmkdir build
进入build目录执行html
../configure -enable-checking=release -enable-languages=c,c++ -disable-multilib(生成Makefile文件)
修改Makefile文件中prefix=安装路径,这里的安装路径是/home/guanjun/caffe_lib/third/gcc-4.8.5
注意本文如下的安装路径都是/home/guanjun/caffe_lib/third
下的对应目录python
make -j32 make install
安装完成后要将gcc4.8.5中bin目录添加到环境变量(临时建立env_caffe.sh)
在env_caffe.sh中添加linux
export PATH=/home/guanjun/caffe_lib/third/gcc-4.8.5/bin:$PATH
执行安装文件
./Anaconda2-4.2.0-Linux-x86_64.sh
注意在提示的最后的选项选no即不添加到.bashrc
以后一样在env_caffe.sh中添加export PATH=/home/guanjun/anaconda2/bin:$PATH
以后执行下面的命令
source ~/env_caffe.sh
由于编译boost时会用到python环境c++
解压安装包而后执行git
./bootstrap.sh ./b2 install --prefix=安装路径
参考boost Installationgithub
解压安装包而后进入安装包执行shell
mkdir build cd build ccmake ../
按照提示加载配置文件(按c)、修改cmake_install_prefix路径为安装路径、
将WITH CUDA WITH CUFFT WITH JASPER
分别设置为off,按照提示保存退出(按c 按g),而后执行bootstrap
make -j32 make install
解压而后依次执行ubuntu
./configure --prefix=安装路径 make -j32 make intstall
解压而后进入解压文件依次执行centos
mkdir build cd build export CXXFLAGS="-fPIC" ccmake ../
按c加载配置文件、设置安装路径按c g退出,以后执行
make -j32 make install
首先下载lmdb安装包执行git clone https://github.com/LMDB/lmdb
打开lmdb中MakeFile文件、修改安装路径
make -j make install
下载新版OpenBLASgit clone https://github.com/xianyi/OpenBLAS
进入OpenBLAS打开目录中cpuid.h文件在倒数第二行添加#define NO_AVX2 1024
而后执行
make -j32 make install PREFIX=安装路径
解压、进入文件执行
./configure --prefix=安装路径 make -j32 make install
解压、进入文件执行
./configure --prefix=安装路径 make -j32 make install
以后将protobuf添加到环境变量中(env_caffe.sh)export PATH=/home/guanjun/caffe_lib/third/protobuf/bin:$PATH
在编译caffe前确保env_caffe.sh文件以下
export PATH=/home/guanjun/caffe_lib/third/gcc-4.8.5/bin:/home/guanjun/anaconda2/bin:/home/guanjun/caffe_lib/third/protobuf/bin:$PATH export PYTHONPATH=/home/guanjun/caffe/py-R-FCN/caffe/python:$PYTHONPATH export LD_LIBRARY_PATH=/home/guanjun/caffe_lib/third_source/leveldb/out-shared:/home/guanjun/anaconda2/lib:/usr/local/cuda/lib64:/home/guanjun/caffe_lib/third/boost/lib:/home/guanjun/caffe_lib/third/hdf5/lib:/home/guanjun/caffe_lib/third/lmdb/lib:/home/guanjun/caffe_lib/third/openblas_v1/lib:/home/guanjun/caffe_lib/third/opencv/lib:/home/guanjun/caffe_lib/third/protobuf/lib:/home/guanjun/caffe_lib/third/glog/lib:/home/guanjun/caffe_lib/third/gflags/lib:/home/guanjun/caffe_lib/third/glibc-2.14/lib:/home/guanjun/caffe_lib/third/gcc-4.8.5/lib64:$LD_LIBRARY_PATH
/home/guanjun/
替换成/home/你的用户名/
同时,保证caffe中的Makefile.config和下面的配置文件同样
# Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1 D_PATH := /home/guanjun/caffe_lib/third # CPU-only switch (uncomment to build without GPU support). #CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers # USE_OPENCV := 0 USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 # OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 lines for compatibility. #CUDA_ARCH := -gencode arch=compute_20,code=sm_20 # -gencode arch=compute_20,code=sm_21 CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_50,code=compute_50 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas # BLAS := atlas BLAS := open # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! BLAS_INCLUDE := /home/guanjun/caffe_lib/third/openblas_v1/include BLAS_LIB := /home/guanjun/caffe_lib/third/openblas_v1/lib # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. #PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. ANACONDA_HOME := /home/guanjun/anaconda2 PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ $(ANACONDA_HOME)/include/python2.7 \ $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \ # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m \ # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. #PYTHON_LIB := /usr/lib PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(D_PATH)/protobuf/include #INCLUDE_DIRS := /data/shiyang/anaconda2/include INCLUDE_DIRS += $(D_PATH)/hdf5/include INCLUDE_DIRS += $(D_PATH)/gflags/include INCLUDE_DIRS += $(D_PATH)/glog/include INCLUDE_DIRS += $(D_PATH)/opencv/include INCLUDE_DIRS += $(D_PATH)/boost/include INCLUDE_DIRS += $(D_PATH)/lmdb/include INCLUDE_DIRS += $(D_PATH)/glibc-2.14/include INCLUDE_DIRS += $(D_PATH)/gcc-4.8.5/include INCLUDE_DIRS += /home/guanjun/caffe_lib/third_source/leveldb/include LIBRARY_DIRS := $(D_PATH)/protobuf/lib #LIBRARY_DIRS := /data/shiyang/anaconda2/lib LIBRARY_DIRS += $(D_PATH)/hdf5/lib LIBRARY_DIRS += $(D_PATH)/gflags/lib LIBRARY_DIRS += $(D_PATH)/glog/lib LIBRARY_DIRS += $(D_PATH)/opencv/lib LIBRARY_DIRS += $(D_PATH)/boost/lib LIBRARY_DIRS += $(D_PATH)/lmdb/lib LIBRARY_DIRS += $(D_PATH)/glibc-2.14/lib LIBRARY_DIRS += $(D_PATH)/gcc-4.8.5/lib64 LIBRARY_DIRS += /home/guanjun/caffe_lib/third_source/leveldb/out-shared INCLUDE_DIRS += $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS += $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 #DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) #Q ?= @
以后执行source ~/env_caffe.sh
进入caffe目录执行
make -j32 make runtest make pycaffe
将caffe的python添加到环境变量export PYTHONPATH=/home/guanjun/caffe/py-R-FCN/caffe/python:$PYTHONPATH
就是env_caffe.sh中的第二行。
新建一个python文件测试import caffe
是否可用。
先把错配的显卡驱动清理干净
sudo apt-get --purge remove nvidia-*
到https://developer.nvidia.com/cuda-downloads下载对应的deb文件(cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb)
到deb的下载目录下
sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb sudo apt-get update sudo apt-get install cuda sudo reboot
参考ubuntu 14.04 如今安装cuda7.5超级简便,惊了
安装依赖
sudo apt-get install -y opencl-headers build-essential protobuf-compiler \ libprotoc-dev libboost-all-dev libleveldb-dev hdf5-tools libhdf5-serial-dev \ libopencv-core-dev libopencv-highgui-dev libsnappy-dev \ libatlas-base-dev cmake libstdc++6-4.8-dbg libgoogle-glog0v5 libgoogle-glog-dev \ libgflags-dev liblmdb-dev git python-pip gfortran libopencv-dev sudo apt-get clean
下载caffe并安装caffe python依赖
git clone https://github.com/BVLC/caffe.git cd caffe cd python for req in $(cat requirements.txt); do sudo pip install $req; done
准备Makefile.config,以便它能够ubuntu上构建
cd ../ cp Makefile.config.example Makefile.config
修改Makefile.config以下
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). # CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers # USE_OPENCV := 0 USE_LEVELDB := 1 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 # OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 lines for compatibility. CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_50,code=compute_50 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := open # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. #PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. ANACONDA_HOME := /home/guan/anaconda2 PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ $(ANACONDA_HOME)/include/python2.7 \ $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \ # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m \ # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. #PYTHON_LIB := /usr/lib PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/ LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial/ # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
注意修改路径。
执行
make all -j make runtest make pycaffe
执行echo "export PYTHONPATH=/opt/cat-dogs/repo/caffe/python:$PYTHONPATH" >> ~/.bashrc
这句也能够不添加到.bashrc,能够本身写个env_caffe.sh每次用caffe的时候source env_caffe.sh
错误
.build_release/src/caffe/proto/caffe.pb.h:12:2: error: #error This file was generated by a newer version of protoc which is
解决方法下载新版本的、编译安装
sudo apt-get install autoconf automake libtool git clone https://github.com/google/protobuf ./autogen.sh ./configure make make check sudo make install
错误
/usr/include/boost/python/detail/wrap_python.hpp:50:23: fatal error: pyconfig.h: No such file or directory
解决方法
export CPLUS_INCLUDE_PATH=/usr/include/python2.7 make clean make all -j2
错误
fatal error: caffe/proto/caffe.pb.h: No such file or directory
解决方法
protoc src/caffe/proto/caffe.proto --cpp_out=. mkdir include/caffe/proto mv src/caffe/proto/caffe.pb.h include/caffe/proto
错误
.build_release/tools/caffe: error while loading shared libraries: libprotobuf.so.14: cannot open shared object file: No such file or directory Makefile:526: recipe for target 'runtest' failed
解决方法添加连接路径
export LD_LIBRARY_PATH=/usr/local/lib/
错误
No module named google.protobuf.internal
解决方法
/home/guan/anaconda2/bin/pip install protobuf
错误
/home/guan/anaconda2/bin/../lib/libstdc++.so.6: version `GLIBCXX_3.4.21' not found
解决方法
conda install libgcc
错误
No module named google.protobuf.internal
解决方法
/home/guan/anaconda2/bin/pip install protobuf
错误
src/caffe/test/test_gradient_based_solver.cpp:373: Failure The difference between expected_updated_weight and solver_updated_weight is 1.7136335372924805e-07, which exceeds error_margin, where expected_updated_weight evaluates to 9.6857547760009766e-06, solver_updated_weight evaluates to 9.8571181297302246e-06, and error_margin evaluates to 1.0000000116860974e-07. [ FAILED ] NesterovSolverTest/2.TestNesterovLeastSquaresUpdateWithEverything, where TypeParam = caffe::GPUDevice<float> (6484 ms)
解决方法
执行export CUDA_VISIBLE_DEVICES=0
,从新执行测试。
参考runtest出现的问题