补充python
默认参数的陷阱app
# 默认参数的陷阱: def func(name,sex='男'): print(name) print(sex) func('jarvis') # 陷阱只针对于默认参数是可变的数据类型: def func(name,alist=[]): alist.append(name) return alist ret1 = func('one') print(ret1,id(ret1)) # ['one'] ret2 = func('two') print(ret2,id(ret2)) # ['one','two'] # 若是你的默认参数指向的是可变的数据类型,那么你不管调用多少次这个默认参数,都是同一个。 def func(a, list=[]): list.append(a) return list print(func(10,)) # [10] print(func(20,[])) # [20] print(func(100,)) # [10,100] def func(a, list= []): list.append(a) return list ret1 = func(10,) # ret1 = [10] ret2 = func(20,[]) # ret2 = [20] ret3 = func(100,) # ret3 = [10,100] print(ret1) # [10,100] re1和re3使用的同一个列表 print(ret2) # [20] print(ret3) # [10,100]
局部做用域的坑函数
count = 1 def func(): count += 1 print(count) func() # 函数中,若是你定义了一个变量,可是在定义这个变量以前对其引用了,那么解释器认为:语法问题(先引用后定义) # 你应该在使用以前先定义。 count = 1 def func(): print(count) count = 3 func()
global nonlocal工具
# global # 在局部做用域声明一个全局变量。 name = 'jarvis' def func(): global name name = 'one' print(name) func() print(name) # 修改一个全局变量 count = 1 def func(): global count count += 1 print(count) func() print(count) # nonlocal # 不可以操做全局变量。 count = 1 def func(): nonlocal count count += 1 func() #报错 # 局部做用域:内层函数对外层函数的局部变量进行修改。 def wrapper(): count = 1 def inner(): nonlocal count count += 1 print(count) inner() print(count) wrapper()
# 函数名 + ()就能够执行此函数。 def func(): print(666) func() # 函数名指向的是函数的内存地址。 a = 1 a() func() #报错 def func(): print(666) print(func,type(func)) # <function func at 0x000001BA864E1D08> func() # 函数名就是变量 def func(): print(666) f = func f1 = f f2 = f1 f() func() f1() f2() def func(): print('in func') def func1(): print('in func1') func1 = func func1() # 函数名能够做为容器类数据类型的元素 def func1(): print('in func1') def func2(): print('in func2') def func3(): print('in func3') l1 = [func1,func2,func3] for i in l1: i() # 函数名能够做为函数的参数 def func(): print('in func') def func1(x): x() # func() print('in func1') func1(func) # 函数名能够做为函数的返回值 def func(): print('in func') def func1(x): # x = func print('in func1') return x ret = func1(func) # func ret() # func()
格式化输出学习
# %s format name = 'jarvis' age = 18 msg = '我叫%s,今年%s' %(name,age) msg1 = '我叫{},今年{}'.format(name,age) # 新特性:格式化输出 name = 'jarvis' age = 18 msg = f'我叫{name},今年{age}' print(msg) # 能够加表达式 dic = {'name':'jarvis','age': 18} msg = f'我叫{dic["name"]},今年{dic["age"]}' print(msg) count = 7 print(f'最终结果:{count**2}') name = 'jarvis' msg = f'个人名字是{name.upper()}' print(msg) # 结合函数写: def _sum(a,b): return a + b msg = f'最终的结果是:{_sum(10,20)}' print(msg) # ! , : { } ;这些标点不能出如今{}这里面 # 优势 # 结构更加简化 # 能够结合表达式,函数进行使用 # 效率提高不少
可迭代对象code
'__iter__'
方法的对象,可迭代对象。获取对象的全部方法而且以字符串的形式表现:dir()orm
判断一个对象是不是可迭代对象对象
s1 = 'fjdskl' l1 = [1,2,3] print(dir(s1)) print(dir((l1))) print('__iter__' in dir(s1)) print('__iter__' in dir(range(10)))
可迭代对象小结索引
字面意思:能够进行循环更新的一个实实在在的值。内存
专业角度: 内部含有'__iter__'
方法的对象,可迭代对象。
判断一个对象是否是可迭代对象: '__iter__'
in dir(对象)
str list tuple dict set range
优势:
缺点:
迭代器的定义
'__iter__'
方法而且含有'__next__'
方法的对象就是迭代器。'__iter__'
and '__next__'
在不在dir(对象)判断一个对象是不是迭代器
with open('文件1',encoding='utf-8',mode='w') as f1: print(('__iter__' in dir(f1)) and ('__next__' in dir(f1)))
迭代器的取值
#可迭代对象能够转化成迭代器 s1 = 'fjdag' obj = iter(s1) # s1.__iter__() print(obj) print(next(obj)) # print(obj.__next__()) print(next(obj)) # print(obj.__next__()) print(next(obj)) # print(obj.__next__()) print(next(obj)) # print(obj.__next__()) print(next(obj)) # print(obj.__next__()) #多一个就会报错 l1 = [11,22,33,44,55,66] obj = iter(l1) print(next(obj)) print(next(obj)) print(next(obj)) print(next(obj)) print(next(obj)) print(next(obj))
可迭代对象如何转化成迭代器
iter([1,2,3])
while循环模拟for循环机制
l1 = [11,22,33,44,55,66,77,88,99,1111,1133,15652] # 将可迭代对象转化成迭代器。 obj = iter(l1) while 1: try: print(next(obj)) except StopIteration: break
小结
'__iter__'
方法而且含有'__next__'
方法的对象就是迭代器。可迭代对象与迭代器的对比
可迭代对象