最近风声比较紧,google各类连不上,在受限的网络环境里边各类不成功,郁闷至极。tensorflow在mac上安装各类不成功,查找各类资料找到一个脱网的安装方法。本人没用过python,照猫画虎,备忘纪录以下: 配置:mac 10.10系统,系统安装有pip。python
安装: 1. 安装virtualenv 用pip命令来安装 vmac$ sudo pip install --upgrade virtualenv 2. 安装好后建立一个工做目录,我直接在home里建立了个文件夹. vmac$ virtualenv --system-site-packages ~/tensorflow 3. 而后进入目录激活沙箱 vmac$ cd ~/tensorflow vmac$ source bin/activate (tensorflow) vmac$ 4. 下载tensorflow http://pan.baidu.com/s/1ntjaMnf 密码:sznb 把下载下来的tensorflow-0.5.0-py2-none-any.whl文件放到~/tensorflow目录里. 进入沙箱后,执行命令来安装tensorflow在沙箱中. (tensorflow) vmac$ pip install --upgrade tensorflow-0.5.0-py2-none-any.whl网络
5. 建立个myfirst.py文件 测试一下。 vmac$ python myfirst.py
import tensorflow as tf import numpy as np # Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3 x_data = np.random.rand(100).astype(np.float32) y_data = x_data * 0.1 + 0.3 # Try to find values for W and b that compute y_data = W * x_data + b # (We know that W should be 0.1 and b 0.3, but Tensorflow will # figure that out for us.) W = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.zeros([1])) y = W * x_data + b # Minimize the mean squared errors. loss = tf.reduce_mean(tf.square(y - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) # Before starting, initialize the variables. We will 'run' this first. init = tf.initialize_all_variables() # Launch the graph. sess = tf.Session() sess.run(init) # Fit the line. for step in range(201): sess.run(train) if step % 20 == 0: print(step, sess.run(W), sess.run(b)) # Learns best fit is W: [0.1], b: [0.3]