从k8s v1.8以后, 引入了Metric-API
, 之前在使用heapster获取资源指标时, heapster有本身的获取路径, 没有经过apiServer, 因此以前资源指标的数据并不能经过apiServer直接获取, 用户和Kubernetes的其余组件必须经过master proxy的方式才能访问到. 后来k8s引入了资源指标API(Metrics API),有了Metrics Server组件,也采集到了该有的数据,也暴露了api,但由于api要统一,如何将请求到api-server的/apis/metrics
请求转发给Metrics Server呢,解决方案就是:kube-aggregator
, 因而资源指标的数据就从k8s的api中的直接获取,没必要再经过其它途径。node
Metrics-Server收集指标数据的方式是从各节点上kubelet提供的Summary API 收集数据,收集Node和Pod核心资源指标数据,主要是内存和cpu方面的使用状况,并将收集的信息存储在内存中,因此当经过kubectl top不能查看资源数据的历史状况,其它资源指标数据则经过prometheus采集了。python
k8s中不少组件是依赖于资源指标API的功能 ,好比kubectl top 、hpa,若是没有一个资源指标API接口,这些组件是无法运行的;git
新一代监控系统由核心指标流水线和监控指标流水线协同组成github
for i in auth-delegator.yaml auth-reader.yaml metrics-apiservice.yaml metrics-server-deployment.yaml metrics-server-service.yaml resource-reader.yaml;do wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/metrics-server/$i; done
docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server-amd64:v0.3.5 docker tag registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server-amd64:v0.3.5 k8s.gcr.io/metrics-server-amd64:v0.3.5 docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/addon-resizer:1.8.5 docker tag registry.cn-hangzhou.aliyuncs.com/google_containers/addon-resizer:1.8.5 k8s.gcr.io/addon-resizer:1.8.5
修改resource-reader.yaml
web
# 在resources下添加一行nodes/stats, 下列代码为部分代码 apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: system:metrics-server labels: kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile rules: - apiGroups: - "" resources: - pods - nodes/stats #添加此行 - nodes - namespaces
修改metrics-server-deployment.yaml
docker
默认会从kubelet的基于HTTP的10255端口获取指标数据,但出于安全通讯目的,kubeadm在初始化集群时会关掉10255端口,致使没法正常获取数据shell
# 第一个container metrics-server的command只留下如下三行 containers: - name: metrics-server image: k8s.gcr.io/metrics-server-amd64:v0.3.5 command: - /metrics-server - --kubelet-insecure-tls # 不验证客户端证书 - --kubelet-preferred-address-types=InternalIP # 直接使用节点IP地址获取数据
# 第二个container metrics-server-nanny的command中内存和CPU修改成本身须要的具体的数值 command: - /pod_nanny - --config-dir=/etc/config - --cpu=20m - --extra-cpu=0.5m - --memory=200Mi #{{ base_metrics_server_memory }} - --extra-memory=50Mi - --threshold=5 - --deployment=metrics-server-v0.3.5 - --container=metrics-server - --poll-period=300000 - --estimator=exponential - --minClusterSize=10
Metric-Server
# 进入到yaml文件目录执行命令 kubectl apply -f ./
# 能够看到pod已经运行起来了 kubectl get pods -n kube-system |grep metrics-server [root@master ~]# kubectl api-versions|grep metrics #已经能够看到metric的api了 metrics.k8s.io/v1beta1 [root@master ~]# kubectl proxy --port=8080 [root@master ~]# curl http://localhost:8080/apis/metrics.k8s.io/v1beta1 [root@master ~]# curl http://localhost:8080/apis/metrics.k8s.io/v1beta1/nodes
# kubectl可使用了 [root@master ~]# kubectl top node NAME CPU(cores) CPU% MEMORY(bytes) MEMORY% master 513m 25% 1348Mi 78% node01 183m 18% 1143Mi 66%
Prometheus能够采集其它各类指标,可是prometheus采集到的metrics并不能直接给k8s用,由于二者数据格式不兼容,所以还须要另一个组件(kube-state-metrics)
,将prometheus的metrics数据格式转换成k8s API接口能识别的格式,转换之后,由于是自定义API,因此还须要用Kubernetes aggregator
在主API服务器中注册,以便直接经过/apis/来访问。后端
如上图,每一个被监控的主机均可以经过专用的exporter
程序提供输出监控数据的接口,并等待Prometheus
服务器周期性的进行数据抓取。若是存在告警规则,则抓取到数据以后会根据规则进行计算,知足告警条件则会生成告警,并发送到Alertmanager
完成告警的汇总和分发。当被监控的目标有主动推送数据的需求时,能够以Pushgateway
组件进行接收并临时存储数据,而后等待Prometheus
服务器完成数据的采集。centos
node_exporter
:收集主机的指标数据,如平均负载、CPU、内存、磁盘、网络等等多个维度的指标数据。Prometheus把API Server做为服务发现系统发现和监控集群中的全部可被监控对象
这里须要特别说明的是, Pod 资源须要添加下列注解信息才能被 Prometheus 系统自动发现并抓取其内建的指标数据。
仅指望Prometheus为后端生成自定义指标时,仅部署Prometheus服务便可,甚至不须要持久功能
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/prometheus
node-exporter
: prometheus的export,收集Node级别的监控数据prometheus
: 监控服务端,从node-exporter拉数据并存储为时序数据。kube-state-metrics
: 将prometheus中能够用PromQL查询到的指标数据转换成k8s对应的数据k8s-prometheus-adpater
: 聚合进apiserver,即一种custom-metrics-apiserver实现开启Kubernetes aggregator功能
(参考上文metric-server)# 下载相关yaml文件 for i in kube-state-metrics-deployment.yaml kube-state-metrics-rbac.yaml kube-state-metrics-service.yaml; do wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/prometheus/$i; done
# 全部节点都要执行 docker pull registry.cn-hangzhou.aliyuncs.com/google_containers/addon-resizer:1.8.6 docker tag registry.cn-hangzhou.aliyuncs.com/google_containers/addon-resizer:1.8.6 k8s.gcr.io/addon-resizer:1.8.6 docker pull quay-mirror.qiniu.com/coreos/kube-state-metrics:v1.3.0 docker tag quay-mirror.qiniu.com/coreos/kube-state-metrics:v1.3.0 quay.io/coreos/kube-state-metrics:v1.3.0
# 查看提供的指标数据 curl 10.105.51.200:8080/metrics # 10.105.51.200 是Service的IP
监听 9100 端口
事实上,每一个节点自己就能经过kubelet或cAdvisor提供节点指标数据,所以不须要安装node_exporter程序
for i in node-exporter-ds.yml node-exporter-service.yaml; do wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/prometheus/$i; done
kubectl apply -f ./
curl 10.0.0.51:9100/metrics # 10.0.0.51是node01节点的IP
prometheus
根据告警规则将告警信息发送给alertmanager
,然后alertmanager
对收到的告警信息进行处理,包括去重、分组并路由到告警接收端
alertmanager使用了持久存储卷,PVC , 这里只作测试, 因此把这部分修改了; 端口9093会有Web UI
for i in alertmanager-configmap.yaml alertmanager-deployment.yaml alertmanager-pvc.yaml alertmanager-service.yaml; do wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/prometheus/$i; done
# 修改alertmanager-deployment.yaml的pvc设置 volumes: - name: config-volume configMap: name: alertmanager-config - name: storage-volume emptyDir: {} # persistentVolumeClaim: # claimName: alertmanager
# 修改alertmanager-service.yaml spec: ports: - name: http port: 80 protocol: TCP targetPort: 9093 nodePort: 30093 selector: k8s-app: alertmanager type: "NodePort"
kubectl apply -f ./ kubectl get deployments -n kube-system
# 浏览器能够直接访问到Web UI http://10.0.0.50:30093/#/alerts
Prometheus提供Web UI,端口9090,须要存储卷,经过volumeClaimTemplates提供, 这里只作测试, 因此把这部分修改了, 因此采用了马哥的安装部署方式
# 官方安装yaml文件 for i in prometheus-configmap.yaml prometheus-rbac.yaml prometheus-service.yaml prometheus-statefulset.yaml; do wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/prometheus/$i; done # 马哥安装yaml文件 git clone https://github.com/iKubernetes/k8s-prom.git && cd k8s-prom #我只使用了这里边的prometheus文件, 而且把namespace统一修改为了kube-system
[root@master prometheus]# ls prometheus-cfg.yaml prometheus-deploy.yaml prometheus-rbac.yaml prometheus-svc.yaml kubectl apply -f ./
# 查看Web UI: http://10.0.0.50:30090
PromQL接口没法直接做为自定义指标数据源,它不是聚合API服务器
须要使用 k8s-prometheus-adapter
# 配置ssl证书 cd /etc/kubernetes/pki/ (umask 077;openssl genrsa -out serving.key 2048) openssl req -new -key serving.key -out serving.csr -subj "/CN=serving" openssl x509 -req -in serving.csr -CA /etc/kubernetes/pki/ca.crt -CAkey /etc/kubernetes/pki/ca.key -CAcreateserial -out serving.crt -days 3650
k8s-prometheus-adapter默认部署在custom-metrics名称空间,在该名称空间建立secret对象
证书和私钥键名为 serving.crt 和 serving.key
cd /etc/kubernetes/pki/ kubectl create namespace custom-metrics kubectl create secret generic cm-adapter-serving-certs -n custom-metrics --from-file=serving.crt=./serving.crt --from-file=serving.key=./serving.key
git clone https://github.com/DirectXMan12/k8s-prometheus-adapter cd k8s-prometheus-adapter/deploy/manifests/
# 编辑:custom-metrics-apiserver-deployment.yaml 第28行. 由于个人promethus部署在了kube-system名称空间中 --prometheus-url=http://prometheus.prom.svc:9090/ -> --prometheus-url=http://prometheus.kube-system.svc:9090/
# 查看API kubectl api-versions | grep custom # 列出指标名称 kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1" | jq '.resources[].name' # 查看pod内存占用率 kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/kube-system/pods/*/memory_usage_bytes" | jq
自动弹性伸缩工具 Auto Scaling:
Horizontal Pod Autoscaling能够根据CPU利用率(内存为不可压缩资源)
自动伸缩一个Replication Controller、Deployment 或者Replica Set中的Pod数量;
HPA自身是一个控制循环,周期由 controller-manager的 --horizontal-pod-autoscaler-sync-period选项定义,默认为30s
对于未定义资源需求量的Pod对象,HPA控制器没法定义容器CPU利用率,且不会为该指标采起任何操做
对于每一个Pod的自定义指标,HPA仅能处理原始值而非利用率
默认缩容延迟时长为5min,扩容延迟时长为3min,目的是防止出现抖动
目前HPA只支持两个版本,其中v1版本只支持核心指标的定义;
[root@master ~]# kubectl api-versions |grep autoscaling autoscaling/v1 # 仅支持CPU一种资源指标的扩容 autoscaling/v2beta1 # 支持更多自定义资源指标的扩容 autoscaling/v2beta2 # 支持更多自定义资源指标的扩容
kubectl run myapp --image=ikubernetes/myapp:v1 --replicas=1 --requests='cpu=50m,memory=100Mi' --limits='cpu=50m,memory=100Mi' --labels='app=myapp' --expose --port=80
[root@master ~]# kubectl get pod NAME READY STATUS RESTARTS AGE myapp-cf57cd7b-2r6q2 1/1 Running 0 2m3s
用kubectl autoscale,其实就是建立HPA控制器的
kubectl autoscale deployment myapp --min=1 --max=8 --cpu-percent=60 # --min:表示最小扩展pod的个数 # --max:表示最多扩展pod的个数 # --cpu-percent:cpu利用率
[root@master ~]# kubectl get hpa NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE myapp Deployment/myapp 0%/60% 1 8 1 4m14s
kubectl patch svc myapp -p '{"spec":{"type": "NodePort"}}' kubectl get svc |grep myapp # [root@master ~]# kubectl get svc |grep myapp # myapp NodePort 10.99.246.253 <none> 80:31835/TCP 11m
#压测命令 ab -c 100 -n 500000000 http://10.0.0.51:30304/index.html [root@master manifests]# kubectl describe hpa |grep -A 3 "resource cpu" resource cpu on pods (as a percentage of request): 81% (40m) / 60% Min replicas: 1 Max replicas: 8 Deployment pods: 3 current / 3 desired [root@master manifests]# kubectl get pod NAME READY STATUS RESTARTS AGE myapp-cf57cd7b-2lqdx 1/1 Running 0 14m myapp-cf57cd7b-bwm4h 1/1 Running 0 3m19s myapp-cf57cd7b-fc5ns 1/1 Running 0 91s
# 压测结束五分钟后, 资源恢复到初始值 [root@master manifests]# kubectl describe hpa |grep -A 3 "resource cpu" resource cpu on pods (as a percentage of request): 0% (0) / 60% Min replicas: 1 Max replicas: 8 Deployment pods: 1 current / 1 desired [root@master manifests]# kubectl get pod NAME READY STATUS RESTARTS AGE myapp-cf57cd7b-2lqdx 1/1 Running 0 22m
HPA(v2)支持从metrics-server中请求核心指标;从k8s-prometheus-adapter一类自定义API中获取自定义指标数据, 多个指标计算时,结果中数值较大的胜出
apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler metadata: name: myapp spec: scaleTargetRef: # 要缩放的目标资源 apiVersion: apps/v1 kind: Deployment name: myapp minReplicas: 2 maxReplicas: 10 metrics: - type: Resource resource: name: cpu targetAverageUtilization: 50 - type: Resource resource: name: memory targetAverageValue: 50Mi
metrics,计算所需Pod副本数量的指标列表,每一个指标单独计算,取全部计算结果的最大值做为最终副本数量
ikubernetes/metrics-app 运行时会经过 /metrics路径输出 http_requests_total 和 http_requests_per_second 两个指标
注释 prometheus.io/scrape:"true" 使Pod对象可以被 Promethues采集相关指标
apiVersion: apps/v1 kind: Deployment metadata: labels: app: metrics-app name: metrics-app spec: replicas: 2 selector: matchLabels: app: metrics-app template: metadata: labels: app: metrics-app annotations: prometheus.io/scrape: "true" prometheus.io/port: "80" prometheus.io/path: "/metrics" spec: containers: - image: ikubernetes/metrics-app name: metrics-app ports: - name: web containerPort: 80 resources: requests: cpu: 200m memory: 256Mi readinessProbe: httpGet: path: / port: 80 initialDelaySeconds: 3 periodSeconds: 5 livenessProbe: httpGet: path: / port: 80 initialDelaySeconds: 3 periodSeconds: 5 --- apiVersion: v1 kind: Service metadata: name: metrics-app labels: app: metrics-app spec: ports: - name: web port: 80 targetPort: 80 selector: app: metrics-app
curl 10.98.175.207/metrics # IP为上一个文件建立的service IP
Prometheus
经过服务发现机制发现新建立的Pod对象,根据注释提供的配置信息识别指标并归入采集对象,然后由k8s-prometheus-adapter
将这些指标注册到自定义API中,提供给HPA(v2)
控制器和调度器等做为调度评估参数使用
apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler metadata: name: metrics-app-hpa spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: metrics-app minReplicas: 2 maxReplicas: 10 metrics: - type: Pods pods: metricName: http_requests_per_second targetAverageValue: 800m # 800m 即0.8个/秒
# 压测命令 while true; do curl 10.98.175.207/metrics &>/dev/null; sleep 0.1; done # IP为service IP
[root@master ~]# kubectl describe hpa metrics-app-hpa |grep -A 4 Metrics Metrics: ( current / target ) "http_requests_per_second" on pods: 4350m / 800m Min replicas: 2 Max replicas: 10 Deployment pods: 10 current / 10 desired
编辑k8s-prometheus-adapter/deploy/manifests/custom-metrics-config-map.yaml
添加规则:
rules: - seriesQuery: 'http_requests_total{kubernetes_namespace!="",kubernetes_pod_name!=""}' resources: overrides: kubernetes_namespace: {resource: "namespace"} kubernetes_pod_name: {resource: "pod"} name: matches: "^(.*)_total" as: "${1}_per_second" metricsQuery: 'sum(rate(<<.Series>>{<<.LabelMatchers>>}[2m])) by (<<.GroupBy>>)'
将prometheus指标升级为k8s自定义指标,须要定义规则
将 http_requests_total 命令为 http_requests_per_second 自定义指标
让配置生效:
须要先应用 custom-metrics-config-map.yaml 而后手动删除 custom-metrics 空间下 custom-metrics-apiserver-xxxx Pod
注意:修改config-map后,不删除Pod,不会生效
测试:
kubectl get pods -w
curl 10.104.226.230/metrics
kubectl run client -it --image=cirros --rm -- /bin/sh
while true; do curl http://metrics-app; let i++; sleep 0.$RANDOM; done # 模拟压力
测试须要达到数分钟后才能看到自动扩容,缘由是:默认缩容延迟时长为5min,扩容延迟时长为3min
https://www.cnblogs.com/fawaikuangtu123/p/11296510.html https://www.qingtingip.com/h_252011.html https://www.servicemesher.com/blog/prometheus-operator-manual/ https://www.cnblogs.com/centos-python/articles/10921991.html https://pdf.us/tag/docker