动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
动态规划算法一般基于一个递推公式及一个或多个初始状态。 当前子问题的解将由上一次子问题的解推出。算法
要解决一个给定的问题,咱们须要解决其不一样部分(即解决子问题),再合并子问题的解以得出原问题的解。
一般许多子问题很是类似,为此动态规划法试图只解决每一个子问题一次,从而减小计算量。
一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次须要同一个子问题解之时直接查表。
这种作法在重复子问题的数目关于输入的规模呈指数增加时特别有用。
动态规划有三个核心元素:
1.最优子结构
2.边界
3.状态转移方程优化
咱们来看一到题目spa
有一座高度是10级台阶的楼梯,从下往上走,每跨一步只能向上1级或者2级台阶。求出一共有多少种走法。
好比,每次走1级台阶,一共走10步,这是其中一种走法。
再好比,每次走2级台阶,一共走5步,这是另外一种走法。code
可是这样一个个算太麻烦了,咱们能够只去思考最后一步怎么走,以下图blog
这样走到第十个楼梯的走法 = 走到第八个楼梯 + 走到第九个楼梯
咱们用f(n)来表示 走到第n个楼梯的走法,因此就有了f(10) = f(9) + f(8)
而后f(9) = f(8) + f(7), f(8) = f(7) + f(6)......递归
这样咱们就得出来一个递归式:
f(n) = f(n-1) + f(n-2);
还有两个初始状态:
f(1) = 1;
f(2) = 2; 图片
这样就得出了第一种解法ci
function getWays(n) { if (n < 1) return 0; if (n == 1) return 1; if (n == 2) return 2; return getWays(n-1) + getWays(n-2); }
这种方法的时间复杂度为O(2^n)get
能够看到这是一颗二叉树,数的节点个数就是咱们递归方程须要计算的次数,
数的高度为N,节点个数近似于2^n
因此时间复杂度近似于O(2^n)数学
可是这种方法能不能优化呢?
咱们会发现有些值被重复计算,以下图
相同颜色表明着重复的部分,那么咱们可不能够把这些重复计算的值记录下来呢?
这样的优化就有了第二种方法
const map = new Map(); function getWays(n) { if (n < 1) return 0; if (n == 1) return 1; if (n == 2) return 2; if (map.has(n)) { return map.get(n); } const value = getWays(n-1) + getWays(n-2); map.set(n, value); return value; }
由于map里最终会存放n-2个键值对,因此空间复杂度为O(n),时间复杂度也为O(n)
继续想想这就是最优的解决方案了吗?
咱们回到一开始的思路,咱们是假定前面的楼梯已经走完,只考虑最后一步,因此才得出来f(n) = f(n-1) + f(n-2)的递归式,这是一个置顶向下求解的式子
通常来讲,按照正常的思路应该是一步一步往上走,应该是自底向上去求解才比较符合正常人的思惟,咱们来看看行不行的通
这是一开始走的一个和两个楼梯的走法数,即以前说的初始状态
这是进行了一次迭代得出了3个楼梯的走法,f(3)只依赖于f(1) 和 f(2)
继续看下一步
这里又进行了一次迭代得出了4个楼梯的走法,f(4)只依赖于f(2) 和 f(3)
咱们发现每次迭代只须要前两次迭代的数据,不用像备忘录同样去保存全部子状态的数据
function getWays(n) { if (n < 1) return 0; if (n == 1) return 1; if (n == 2) return 2; // a保存倒数第二个子状态数据,b保存倒数第一个子状态数据, temp 保存当前状态的数据 let a = 1, b = 2; let temp = a + b; for (let i = 3; i <= n; i++) { temp = a + b; a = b; b = temp; } return temp; }
这是咱们能够再看看当前的时间复杂度和空间复杂度
当前时间复杂度仍为O(n),但空间复杂度降为O(1)
这就是理想的结果
这只是动态规划里最简单的题目之一,由于它只有一个变化维度当变化维度变成两个、三个甚至更多时,会更加复杂,背包问题就是比较典型的多维度问题,有兴趣的能够去网上看看《背包九讲》