排序算法 动图讲解

本文由 简悦 SimpRead 转码, 原文地址 https://www.toutiao.com/i6732720817001464327/html

做者:郭耀华
来源:https://www.cnblogs.com/guoyaohua/p/8600214.html

最近几天在研究排序算法,看了不少博客,发现网上有的文章中对排序算法解释的并非很透彻,并且有不少代码都是错误的,例若有的文章中在 “桶排序” 算法中对每一个桶进行排序直接使用了 Collection.sort()函数,这样虽然能达到效果,但对于算法研究来说是不能够的。算法

因此我根据这几天看的文章,整理了一个较为完整的排序算法总结,本文中的全部算法均有 JAVA 实现,经本人调试无误后才发出,若有错误,请各位前辈指出。数组

0、排序算法说明数据结构

0.1 排序的定义ide

对一序列对象根据某个关键字进行排序。函数

0.2 术语说明性能

  • 稳定:若是 a 本来在 b 前面,而 a=b,排序以后 a 仍然在 b 的前面;
  • 不稳定:若是 a 本来在 b 的前面,而 a=b,排序以后 a 可能会出如今 b 的后面;
  • 内排序:全部排序操做都在内存中完成;
  • 外排序:因为数据太大,所以把数据放在磁盘中,而排序经过磁盘和内存的数据传输才能进行;
  • 时间复杂度:一个算法执行所耗费的时间。
  • 空间复杂度:运行完一个程序所需内存的大小。

0.3 算法总结ui

图片名词解释:设计

  • n: 数据规模
  • k: “桶” 的个数
  • In-place: 占用常数内存,不占用额外内存
  • Out-place: 占用额外内存

0.4 算法分类3d

0.5 比较和非比较的区别

常见的快速排序、归并排序、堆排序、冒泡排序等属于比较排序。在排序的最终结果里,元素之间的次序依赖于它们之间的比较。每一个数都必须和其余数进行比较,才能肯定本身的位置。

在冒泡排序之类的排序中,问题规模为 n,又由于须要比较 n 次,因此平均时间复杂度为 O(n²)。在归并排序、快速排序之类的排序中,问题规模经过分治法消减为 logN 次,因此时间复杂度平均 O(nlogn)。

比较排序的优点是,适用于各类规模的数据,也不在意数据的分布,都能进行排序。能够说,比较排序适用于一切须要排序的状况。

计数排序、基数排序、桶排序则属于非比较排序。非比较排序是经过肯定每一个元素以前,应该有多少个元素来排序。针对数组 arr,计算 arr[i] 以前有多少个元素,则惟一肯定了 arr[i] 在排序后数组中的位置。

非比较排序只要肯定每一个元素以前的已有的元素个数便可,全部一次遍历便可解决。算法时间复杂度 O(n)。

非比较排序时间复杂度底,但因为非比较排序须要占用空间来肯定惟一位置。因此对数据规模和数据分布有必定的要求。

一、冒泡排序(Bubble Sort)

冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,若是它们的顺序错误就把它们交换过来。走访数列的工做是重复地进行直到没有再须要交换,也就是说该数列已经排序完成。

这个算法的名字由来是由于越小的元素会经由交换慢慢 “浮” 到数列的顶端。冒泡排序介绍:冒泡排序

1.1 算法描述

  • 比较相邻的元素。若是第一个比第二个大,就交换它们两个;
  • 对每一对相邻元素做一样的工做,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
  • 针对全部的元素重复以上的步骤,除了最后一个;
  • 重复步骤 1~3,直到排序完成。

1.2 动图演示

1.3 代码实现

1.4 算法分析

最佳状况:T(n) = O(n) 最差状况:T(n) = O(n2) 平均状况:T(n) = O(n2)

二、选择排序(Selection Sort)

表现最稳定的排序算法之一,由于不管什么数据进去都是 O(n2) 的时间复杂度,因此用到它的时候,数据规模越小越好。惟一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序通常人想到的最多的排序方法了吧。

选择排序 (Selection-sort) 是一种简单直观的排序算法。它的工做原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,而后,再从剩余未排序元素中继续寻找最小(大)元素,而后放到已排序序列的末尾。以此类推,直到全部元素均排序完毕。

2.1 算法描述

n 个记录的直接选择排序可通过 n-1 趟直接选择排序获得有序结果。具体算法描述以下:

  • 初始状态:无序区为 R[1..n],有序区为空;
  • 第 i 趟排序 (i=1,2,3…n-1) 开始时,当前有序区和无序区分别为 R[1..i-1]和 R(i..n)。该趟排序从当前无序区中 - 选出关键字最小的记录 R[k],将它与无序区的第 1 个记录 R 交换,使 R[1..i]和 R[i+1..n)分别变为记录个数增长 1 个的新有序区和记录个数减小 1 个的新无序区;
  • n-1 趟结束,数组有序化了。

2.2 动图演示

2.3 代码实现

2.4 算法分析

最佳状况:T(n) = O(n2) 最差状况:T(n) = O(n2) 平均状况:T(n) = O(n2)

三、插入排序(Insertion Sort)

插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工做原理是经过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,一般采用 in-place 排序(即只需用到 O(1) 的额外空间的排序),于是在从后向前扫描过程当中,须要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

3.1 算法描述

通常来讲,插入排序都采用 in-place 在数组上实现。具体算法描述以下:

  • 从第一个元素开始,该元素能够认为已经被排序;
  • 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  • 若是该元素(已排序)大于新元素,将该元素移到下一位置;
  • 重复步骤 3,直到找到已排序的元素小于或者等于新元素的位置;
  • 将新元素插入到该位置后;
  • 重复步骤 2~5。

3.2 动图演示

3.2 代码实现

3.4 算法分析

最佳状况:T(n) = O(n) 最坏状况:T(n) = O(n2) 平均状况:T(n) = O(n2)

四、希尔排序(Shell Sort)

希尔排序是希尔(Donald Shell)于 1959 年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序通过改进以后的一个更高效的版本,也称为缩小增量排序,同时该算法是冲破 O(n2)的第一批算法之一。它与插入排序的不一样之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。

希尔排序是把记录按下表的必定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减小,每组包含的关键词愈来愈多,当增量减至 1 时,整个文件恰被分红一组,算法便终止。

4.1 算法描述

咱们来看下希尔排序的基本步骤,在此咱们选择增量 gap=length/2,缩小增量继续以 gap = gap/2 的方式,这种增量选择咱们能够用一个序列来表示,{n/2,(n/2)/2…1},称为增量序列。希尔排序的增量序列的选择与证实是个数学难题,咱们选择的这个增量序列是比较经常使用的,也是希尔建议的增量,称为希尔增量,但其实这个增量序列不是最优的。此处咱们作示例使用希尔增量。

先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:

  • 选择一个增量序列 t1,t2,…,tk,其中 ti>tj,tk=1;
  • 按增量序列个数 k,对序列进行 k 趟排序;
  • 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列做为一个表来处理,表长度即为整个序列的长度。

4.2 过程演示

4.3 代码实现

4.4 算法分析

最佳状况:T(n) = O(nlog2 n) 最坏状况:T(n) = O(nlog2 n) 平均状况:T(n) =O(nlog2n) 

五、归并排序(Merge Sort)

和选择排序同样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,由于始终都是 O(n log n)的时间复杂度。代价是须要额外的内存空间。

归并排序是创建在归并操做上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个很是典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,获得彻底有序的序列;即先使每一个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为 2 - 路归并。

5.1 算法描述

  • 把长度为 n 的输入序列分红两个长度为 n/2 的子序列;
  • 对这两个子序列分别采用归并排序;
  • 将两个排序好的子序列合并成一个最终的排序序列。

5.2 动图演示

5.3 代码实现

5.4 算法分析

最佳状况:T(n) = O(n) 最差状况:T(n) = O(nlogn) 平均状况:T(n) = O(nlogn)

六、快速排序(Quick Sort)

快速排序的基本思想:经过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另外一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

6.1 算法描述

快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述以下:

  • 从数列中挑出一个元素,称为 “基准”(pivot);
  • 从新排序数列,全部元素比基准值小的摆放在基准前面,全部元素比基准值大的摆在基准的后面(相同的数能够到任一边)。在这个分区退出以后,该基准就处于数列的中间位置。这个称为分区(partition)操做;
  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

6.2 动图演示

6.3 代码实现

6.4 算法分析

最佳状况:T(n) = O(nlogn) 最差状况:T(n) = O(n2) 平均状况:T(n) = O(nlogn) 

七、堆排序(Heap Sort)

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似彻底二叉树的结构,并同时知足堆积的性质:即子结点的键值或索引老是小于(或者大于)它的父节点。

7.1 算法描述

  • 将初始待排序关键字序列 (R1,R2….Rn) 构建成大顶堆,此堆为初始的无序区;
  • 将堆顶元素 R[1]与最后一个元素 R[n]交换,此时获得新的无序区 (R1,R2,……Rn-1) 和新的有序区(Rn), 且知足 R[1,2…n-1]<=R[n];
  • 因为交换后新的堆顶 R[1]可能违反堆的性质,所以须要对当前无序区 (R1,R2,……Rn-1) 调整为新堆,而后再次将 R[1]与无序区最后一个元素交换,获得新的无序区 (R1,R2….Rn-2) 和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为 n-1,则整个排序过程完成。

7.2 动图演示

7.3 代码实现

注意:这里用到了彻底二叉树的部分性质:

http://www.cnblogs.com/guoyaohua/p/8595289.html

7.4 算法分析

最佳状况:T(n) = O(nlogn) 最差状况:T(n) = O(nlogn) 平均状况:T(n) = O(nlogn)

八、计数排序(Counting Sort)

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。做为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有肯定范围的整数。

计数排序 (Counting sort) 是一种稳定的排序算法。计数排序使用一个额外的数组 C,其中第 i 个元素是待排序数组 A 中值等于 i 的元素的个数。而后根据数组 C 来将 A 中的元素排到正确的位置。它只能对整数进行排序。

8.1 算法描述

  • 找出待排序的数组中最大和最小的元素;
  • 统计数组中每一个值为 i 的元素出现的次数,存入数组 C 的第 i 项;
  • 对全部的计数累加(从 C 中的第一个元素开始,每一项和前一项相加);
  • 反向填充目标数组:将每一个元素 i 放在新数组的第 C(i) 项,每放一个元素就将 C(i) 减去 1。

8.2 动图演示

8.3 代码实现

8.4 算法分析

当输入的元素是 n 个 0 到 k 之间的整数时,它的运行时间是 O(n + k)。计数排序不是比较排序,排序的速度快于任何比较排序算法。因为用来计数的数组 C 的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上 1),这使得计数排序对于数据范围很大的数组,须要大量时间和内存。

最佳状况:T(n) = O(n+k) 最差状况:T(n) = O(n+k) 平均状况:T(n) = O(n+k)

九、桶排序(Bucket Sort)

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的肯定。

桶排序 (Bucket sort) 的工做的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每一个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排

9.1 算法描述

  • 人为设置一个 BucketSize,做为每一个桶所能放置多少个不一样数值(例如当 BucketSize==5 时,该桶能够存放{1,2,3,4,5}这几种数字,可是容量不限,便可以存放 100 个 3);
  • 遍历输入数据,而且把数据一个一个放到对应的桶里去;
  • 对每一个不是空的桶进行排序,可使用其它排序方法,也能够递归使用桶排序;
  • 从不是空的桶里把排好序的数据拼接起来。

注意,若是递归使用桶排序为各个桶排序,则当桶数量为 1 时要手动减少 BucketSize 增长下一循环桶的数量,不然会陷入死循环,致使内存溢出。

9.2 图片演示

9.3 代码实现

9.4 算法分析

桶排序最好状况下使用线性时间 O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,由于其它部分的时间复杂度都为 O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。

最佳状况:T(n) = O(n+k) 最差状况:T(n) = O(n+k) 平均状况:T(n) = O(n2)

十、基数排序(Radix Sort)

基数排序也是非比较的排序算法,对每一位进行排序,从最低位开始排序,复杂度为 O(kn), 为数组长度,k 为数组中的数的最大的位数;

基数排序是按照低位先排序,而后收集;再按照高位排序,而后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,因此是稳定的。基数排序:基数排序

10.1 算法描述

  • 取得数组中的最大数,并取得位数;
  • arr 为原始数组,从最低位开始取每一个位组成 radix 数组;
  • 对 radix 进行计数排序(利用计数排序适用于小范围数的特色);

10.2 动图演示

10.3 代码实现

10.4 算法分析

最佳状况:T(n) = O(n * k) 最差状况:T(n) = O(n * k) 平均状况:T(n) = O(n * k)

基数排序有两种方法:

  • MSD 从高位开始进行排序
  • LSD 从低位开始进行排序

基数排序 vs 计数排序 vs 桶排序

这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差别:

  • 基数排序:根据键值的每位数字来分配桶
  • 计数排序:每一个桶只存储单一键值
  • 桶排序:每一个桶存储必定范围的数值
相关文章
相关标签/搜索