Spark SQL JAVA和Scala编写Spark SQL程序实现RDD转换成DataFrame+操做HiveContext+操做Mysql

1、 以编程方式执行Spark SQL查询

1. 编写Spark SQL程序实现RDD转换成DataFrame

前面咱们学习了如何在Spark Shell中使用SQL完成查询,如今咱们经过IDEA编写Spark SQL查询程序。java

Spark官网提供了两种方法来实现从RDD转换获得DataFrame,第一种方法是利用反射机制,推导包含某种类型的RDD,经过反射将其转换为指定类型的DataFrame,适用于提早知道RDD的schema。第二种方法经过编程接口与RDD进行交互获取schema,并动态建立DataFrame,在运行时决定列及其类型。node

首先在maven项目的pom.xml中添加Spark SQL的依赖。mysql

 

 

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-sql_2.11</artifactId>
    <version>2.1.3</version>
</dependency>

 

1.1. 经过反射推断Schema

Scala支持使用case class类型导入RDD转换为DataFrame,经过case class建立schema,case class的参数名称会被利用反射机制做为列名。这种RDD能够高效的转换为DataFrame并注册为表。sql

代码以下:shell

Java版本

    

package com.hzk.sparksql;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.ForeachFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.SparkSession;

import java.io.Serializable;

public class ReflectTransform {

public static void main(String[] args) {
SparkSession spark = SparkSession.builder().master("local[*]").appName("Spark").getOrCreate();
JavaRDD<String> lines=spark.read().textFile("D:\\Bigdata\\20.sparksql\\二、以编程方式执行sparksql\\person.txt").javaRDD();


JavaRDD<Person> rowRDD = lines.map(line -> {
String parts[] = line.split(" ");
return new Person(Integer.valueOf(parts[0]),parts[1],Integer.valueOf(parts[2]));
});

Dataset<Row> df = spark.createDataFrame(rowRDD, Person.class);
// df.select("id", "name", "age").
// coalesce(1).write().mode(SaveMode.Append).parquet("parquet.res");
df.foreach(new ForeachFunction<Row>() {
@Override
public void call(Row row) throws Exception {
System.out.println("id:"+row.get(0)+",name:"+row.get(1)+",age:"+row.get(2));
}
});
}


static class Person implements Serializable {
private int id;
private String name;
private int age;

public int getId() {
return id;
}

public void setId(int id) {
this.id = id;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public int getAge() {
return age;
}

public void setAge(int age) {
this.age = age;
}

public Person(int id, String name, int age) {
this.id = id;
this.name = name;
this.age = age;

}
}
}

 

Scala版本


import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession}

/**
  * RDD
转化成DataFrame:利用反射机制
  */
//todo:定义一个样例类Person
case class Person(id:Int,name:String,age:Int)


object CaseClassSchema {

  def main(args: Array[String]): Unit = {
      //todo:一、构建sparkSession 指定appName和master的地址
   
val spark: SparkSession = SparkSession.builder()

                              .appName("CaseClassSchema")
                              .master("local[2]").getOrCreate()
      //todo:2、从sparkSession获取sparkContext对象
     
val sc: SparkContext = spark.sparkContext

      sc.setLogLevel("WARN")//设置日志输出级别
      //todo:3、加载数据
     
val dataRDD: RDD[String] = sc.textFile("D:\\person.txt")

      //todo:4、切分每一行记录
     
val lineArrayRDD: RDD[Array[String]] = dataRDD.map(_.split(" "))

      //todo:5、将RDD与Person类关联
     
val personRDD: RDD[Person] = lineArrayRDD.map(x=>Person(x(0).toInt,x(1),x(2).toInt))

      //todo:6、建立dataFrame,须要导入隐式转换
     
import spark.implicits._

      val personDF: DataFrame = personRDD.toDF()

    //todo-------------------DSL语法操做 start--------------
   
//一、显示DataFrame的数据,默认显示20行

    personDF.show()
    //二、显示DataFrame的schema信息
    personDF.printSchema()
    //三、显示DataFrame记录数
    println(personDF.count())
    //四、显示DataFrame的全部字段
    personDF.columns.foreach(println)
    //五、取出DataFrame的第一行记录
    println(personDF.head())
    //六、显示DataFrame中name字段的全部值
    personDF.select("name").show()
    //七、过滤出DataFrame中年龄大于30的记录
    personDF.filter($"age" > 30).show()
    //八、统计DataFrame中年龄大于30的人数
    println(personDF.filter($"age">30).count())
    //九、统计DataFrame中按照年龄进行分组,求每一个组的人数
    personDF.groupBy("age").count().show()
    //todo-------------------DSL语法操做 end-------------
   
//todo--------------------SQL操做风格 start-----------
   
//todo:将DataFrame注册成表
   
personDF.createOrReplaceTempView("t_person")

    //todo:传入sql语句,进行操做

   
spark.sql("select * from t_person").show()


    spark.sql("select * from t_person where name='zhangsan'").show()

    spark.sql("select * from t_person order by age desc").show()
    //todo--------------------SQL操做风格 end-------------
   
sc.stop()
spark.stop()
  }
}
 

1.2. 经过StructType直接指定Schema

当case class不能提早定义好时,能够经过如下三步建立DataFrame数据库

(1)将RDD转为包含Row对象的RDDapache

(2)基于StructType类型建立schema,与第一步建立的RDD相匹配编程

(3)经过sparkSession的createDataFrame方法对第一步的RDD应用schema建立DataFrameapi

Java版本

 

package com.hzk.sparksql;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FilterFunction;
import org.apache.spark.api.java.function.ForeachFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

import java.io.Serializable;
import java.util.ArrayList;

public class DynamicTransform {
public static void main(String[] args) {

SparkSession spark = SparkSession.builder().master("local[*]").appName("Spark").getOrCreate();
JavaRDD<String> lines=spark.read().textFile("D:\\Bigdata\\20.sparksql\\二、以编程方式执行sparksql\\person.txt").javaRDD();

JavaRDD<Row> personMaps=lines.map(new Function<String, Row>() {
@Override
public Row call(String s) throws Exception {
String[] personString=s.split(" ");
return RowFactory.create(Integer.valueOf(personString[0]),personString[1],Integer.valueOf(personString[2]));
}
});
ArrayList<StructField> fields = new ArrayList<StructField>();
StructField field = null;
field = DataTypes.createStructField("id", DataTypes.IntegerType, true);
fields.add(field);
field = DataTypes.createStructField("name", DataTypes.StringType, true);
fields.add(field);
field = DataTypes.createStructField("age", DataTypes.IntegerType, true);
fields.add(field);

StructType schema = DataTypes.createStructType(fields);

Dataset<Row> df = spark.createDataFrame(personMaps, schema);
df.coalesce(1).write().mode(SaveMode.Append).parquet("parquet.res1");
df.foreach(new ForeachFunction<Row>() {
@Override
public void call(Row row) throws Exception {
System.out.println("id:"+row.get(0)+",name:"+row.get(1)+",age:"+row.get(2));
}
});
}

}
 

Scala版本app



import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row, SparkSession}

/**
  * RDD
转换成DataFrame:经过指定schema构建DataFrame
  */
object SparkSqlSchema {

  def main(args: Array[String]): Unit = {
      //todo:1、建立SparkSession,指定appName和master
     
val spark: SparkSession = SparkSession.builder()

                                .appName("SparkSqlSchema")
                                .master("local[2]")
                                .getOrCreate()
      //todo:2、获取sparkContext对象
   
val sc: SparkContext = spark.sparkContext

      //todo:3、加载数据
   
val dataRDD: RDD[String] = sc.textFile("d:\\person.txt")

      //todo:4、切分每一行
   
val dataArrayRDD: RDD[Array[String]] = dataRDD.map(_.split(" "))

      //todo:5、加载数据到Row对象中
   
val personRDD: RDD[Row] = dataArrayRDD.map(x=>Row(x(0).toInt,x(1),x(2).toInt))

      //todo:6、建立schema
   
val schema:StructType= StructType(Seq(

                                      StructField("id", IntegerType, false),
                                      StructField("name", StringType, false),
                                      StructField("age", IntegerType, false)
                                    ))

     //todo:7、利用personRDD与schema建立DataFrame
   
val personDF: DataFrame = spark.createDataFrame(personRDD,schema)


    //todo:8、DSL操做显示DataFrame的数据结果
   
personDF.show()


    //todo:9、将DataFrame注册成表
   
personDF.createOrReplaceTempView("t_person")

   
    //todo:10、sql语句操做
   
spark.sql("select * from t_person").show()


    spark.sql("select count(*) from t_person").show()


    sc.stop()
spark.stop()
  }
}
 

 

 

 

2. 编写Spark SQL程序操做HiveContext

 

HiveContext是对应spark-hive这个项目,与hive有部分耦合, 支持hql,是SqlContext的子类,在Spark2.0以后,HiveContext和SqlContext在SparkSession进行了统一,能够经过操做SparkSession来操做HiveContext和SqlContext。

2.1. 添加pom依赖

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-hive_2.11</artifactId>
    <version>2.1.3</version>
</dependency>

2.2. 代码实现

package gec.sql

import org.apache.spark.sql.SparkSession
/**
  *
todo:Sparksql操做hive的sql
 
*/
object HiveSupport {

  def main(args: Array[String]): Unit = {
      //todo:1、建立sparkSession
    
val spark: SparkSession = SparkSession.builder()

       .appName("HiveSupport")
       .master("local[2]")
       .config("spark.sql.warehouse.dir", "d:\\spark-warehouse")
       .enableHiveSupport() //开启支持hive
       .getOrCreate()
    spark.sparkContext.setLogLevel("WARN")  //设置日志输出级别


    //todo:2、操做sql语句

   
spark.sql("CREATE TABLE IF NOT EXISTS person (id int, name string, age int) row format delimited fields terminated by ' '")

    spark.sql("LOAD DATA LOCAL INPATH './data/student.txt' INTO TABLE person")
    spark.sql("select * from person ").show()
    spark.stop()
  }
}

须要在当前项目下建立一个data目录,而后在data目录下建立一个student.txt数据文件。

 

 

 

3.编写Spark SQL程序操做Mysql

 

1. JDBC

Spark SQL能够经过JDBC从关系型数据库中读取数据的方式建立DataFrame,经过对DataFrame一系列的计算后,还能够将数据再写回关系型数据库中。

1.1. SparkSql从MySQL中加载数据

1.1.1 经过IDEA编写SparkSql代码

Java版本

 

public static void dataFromMysql() {
SparkSession spark = SparkSession.builder().master("local[*]").appName("Spark").getOrCreate();
Properties properties = new Properties();
properties.setProperty("user", "root");
properties.setProperty("password", "123456");
//todo:三、读取mysql中的数据
Dataset<Row> df = spark.read().jdbc("jdbc:mysql://localhost:3306/baidu", "student", properties);
df.show();
}
 

 

Scala版本

package gec.sql
import java.util.Properties
import org.apache.spark.sql.{DataFrame, SparkSession}
/**
  *
todo:Sparksql从mysql中加载数据
 
*/
object DataFromMysql {

  def main(args: Array[String]): Unit = {
      //todo:1、建立sparkSession对象
     
val spark: SparkSession = SparkSession.builder()

        .appName("DataFromMysql")
        .master("local[2]")
        .getOrCreate()
    //todo:2、建立Properties对象,设置链接mysql的用户名和密码
   
val properties: Properties =new Properties()

    properties.setProperty("user","root")
    properties.setProperty("password","123456")
    //todo:3、读取mysql中的数据
   
val mysqlDF: DataFrame = spark.read.jdbc("jdbc:mysql://192.168.200.100:3306/spark","iplocation",properties)

    //todo:4、显示mysql中表的数据
   
mysqlDF.show()

    spark.stop()
  }
}

执行查看效果:

 

 

1.1.2 经过spark-shell运行

(1)、启动spark-shell(必须指定mysql的链接驱动包)

 

spark-shell \

--master spark://node1:7077 \

--executor-memory 1g \

--total-executor-cores  2 \

--jars /export/servers/hive/lib/mysql-connector-java-5.1.35.jar \

--driver-class-path /export/servers/hive/lib/mysql-connector-java-5.1.35.jar

 

(2)、从mysql中加载数据

val mysqlDF = spark.read.format("jdbc").options(Map("url" -> "jdbc:mysql://192.168.200.100:3306/spark", "driver" -> "com.mysql.jdbc.Driver", "dbtable" -> "iplocation", "user" -> "root", "password" -> "123456")).load()

 

(3)、执行查询

 

 

1.2. SparkSql将数据写入到MySQL中

1.2.1 经过IDEA编写SparkSql代码

(1)编写代码

Java版本

 

public static void sparkSqlToMysql() {
SparkSession spark = SparkSession.builder().master("local[*]").appName("Spark").getOrCreate();
Properties properties = new Properties();
properties.setProperty("user", "root");
properties.setProperty("password", "123456");
JavaRDD<String> lines = spark.read().textFile("D:\\Bigdata\\20.sparksql\\二、以编程方式执行sparksql\\person.txt").javaRDD();
JavaRDD<Person> personRDD = lines.map(new Function<String, Person>() {
@Override
public Person call(String s) throws Exception {
String[] strings = s.split(" ");
return new Person(Integer.valueOf(strings[0]), strings[1], Integer.valueOf(strings[2]));
}
});
Dataset<Row> df = spark.createDataFrame(personRDD, Person.class);
df.createOrReplaceTempView("person");
Dataset<Row> resultDF = spark.sql("select * from person order by age desc");
Properties properties1 = new Properties();
properties.setProperty("user", "root");
properties.setProperty("password", "123456");
resultDF.write().jdbc("jdbc:mysql://localhost:3306/baidu", "person", properties);
spark.stop();


}

public static class Person implements Serializable {
private int id;
private String name;
private int age;

public int getId() {
return id;
}

public void setId(int id) {
this.id = id;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public int getAge() {
return age;
}

public void setAge(int age) {
this.age = age;
}

public Person(int id, String name, int age) {
this.id = id;
this.name = name;
this.age = age;

}
}

 

Scala版本

package gec.sql
import java.util.Properties
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, SaveMode, SparkSession}
/**
  *
todo:sparksql写入数据到mysql中
 
*/
object SparkSqlToMysql {

  def main(args: Array[String]): Unit = {
    //todo:1、建立sparkSession对象
     
val spark: SparkSession = SparkSession.builder()

        .appName("SparkSqlToMysql")
        .getOrCreate()
    //todo:2、读取数据
     
val data: RDD[String] = spark.sparkContext.textFile(args(0))

    //todo:3、切分每一行,
   
val arrRDD: RDD[Array[String]] = data.map(_.split(" "))

    //todo:4、RDD关联Student
   
val studentRDD: RDD[Student] = arrRDD.map(x=>Student(x(0).toInt,x(1),x(2).toInt))

    //todo:导入隐式转换
   
import spark.implicits._

    //todo:5、将RDD转换成DataFrame
   
val studentDF: DataFrame = studentRDD.toDF()

    //todo:6、将DataFrame注册成表
   
studentDF.createOrReplaceTempView("student")

    //todo:7、操做student表 ,按照年龄进行降序排列
   
val resultDF: DataFrame = spark.sql("select * from student order by age desc")


    //todo:8、把结果保存在mysql表中
     
//todo:建立Properties对象,配置链接mysql的用户名和密码
     
val prop =new Properties()

      prop.setProperty("user","root")
      prop.setProperty("password","123456")

  resultDF.write.jdbc("jdbc:mysql://192.168.200.150:3306/spark","student",prop)

    //todo:写入mysql时,能够配置插入mode,overwrite覆盖,append追加,ignore忽略,error默认表存在报错
   
//resultDF.write.mode(SaveMode.Overwrite).jdbc("jdbc:mysql://192.168.200.150:3306/spark","student",prop)

    spark.stop()
  }
}
//todo:建立样例类Student
case class Student(id:Int,name:String,age:Int)
 

 

(2)用maven将程序打包

经过IDEA工具打包便可

 

(3)将Jar包提交到spark集群

spark-submit \

--class gec.sql.SparkSqlToMysql \

--master spark://node1:7077 \

--executor-memory 1g \

--total-executor-cores 2 \

--jars /export/servers/hive/lib/mysql-connector-java-5.1.35.jar  \

--driver-class-path /export/servers/hive/lib/mysql-connector-java-5.1.35.jar \

/root/original-spark-2.0.2.jar  /person.txt

 

 

(4)查看mysql中表的数据

相关文章
相关标签/搜索