PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(3)

PredictionIO+Universal Recommender虽然能够帮助中小企业快速的搭建部署基于用户行为协同过滤的个性化推荐引擎,单纯从引擎层面来看,开发成本近乎于零,但仍然须要一些前提条件。好比说,组织内部最好已经搭建了较稳定的Hadoop,Spark集群,至少要拥有一部分熟悉Spark平台的开发和运维人员,不然会须要技术团队花费很长时间来踩坑,试错。java

本文列举了一些PredictionIO+Universal Recommender的使用过程当中会遇到的Spark平台相关的异常信息,以及其解决思路和最终的解决办法,供参考。node

 

1,执行训练时,发生java.lang.StackOverflowError错误git

这个问题比较简单,查看文档,执行训练时,经过参数指定内存大小能够避免该问题,例如:github

pio train  -- --driver-memory 8g --executor-memory 8g --verbose

 

2,执行训练时,发生找不到EmptyRDD方法的错误apache

Exception in thread "main" java.lang.NoSuchMethodError: org.apache.spark.SparkContext.emptyRDD(Lscala/reflect/ClassTag;)Lorg/apache/spark/rdd/EmptyRDD;
        at com.actionml.URAlgorithm.getRanksRDD(URAlgorithm.scala:534)
        at com.actionml.URAlgorithm.calcAll(URAlgorithm.scala:340)
        at com.actionml.URAlgorithm.train(URAlgorithm.scala:285)
        at com.actionml.URAlgorithm.train(URAlgorithm.scala:175)

这个是编译和执行环境的Spark版本不一致致使的。json

Spark2.1.1 ,查看github上的spark源码发现
这个emptyRDD方法,虽然存在
/** Get an RDD that has no partitions or elements. */def emptyRDD[T: ClassTag]: RDD[T] = new EmptyRDD[T](this)
返回值类型和老版本相比,却发生了变化,不是EmptyRDD。因此在1.4.0下编译经过,2.1.1下执行失败。该方法的不一样版本产生了不兼容。
若是采用我上一篇备忘录中所记述的方式修改过build.sbt,是能够避免这个问题的。
 
 
3,yarn和spark使用的jersey版本不一致的问题
[INFO] [ServerConnector] Started ServerConnector@bd93bc3{HTTP/1.1}{0.0.0.0:4040}
[INFO] [Server] Started @6428ms
Exception in thread "main" java.lang.NoClassDefFoundError: com/sun/jersey/api/client/config/ClientConfig
        at org.apache.hadoop.yarn.client.api.TimelineClient.createTimelineClient(TimelineClient.java:55)
        at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.createTimelineClient(YarnClientImpl.java:181)
        at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.serviceInit(YarnClientImpl.java:168)
        at org.apache.hadoop.service.AbstractService.init(AbstractService.java:163)
        at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:151)
        at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:56)
        at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:156)
        at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
        at org.apache.predictionio.workflow.WorkflowContext$.apply(WorkflowContext.scala:45)
        at org.apache.predictionio.workflow.CoreWorkflow$.runTrain(CoreWorkflow.scala:59)
        at org.apache.predictionio.workflow.CreateWorkflow$.main(CreateWorkflow.scala:250)
        at org.apache.predictionio.workflow.CreateWorkflow.main(CreateWorkflow.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:497)
        at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738)
        at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
        at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.ClassNotFoundException: com.sun.jersey.api.client.config.ClientConfig
        at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
        at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
        ... 21 more
修改方法: engine.json中的sparkConf中设置
"spark.hadoop.yarn.timeline-service.enabled""false",
 
更深刻了解此问题,参考:https://markobigdata.com/2016/08/01/apache-spark-2-0-0-installation-and-configuration/
 
 
4,yarn的空参数处理BUG
[INFO] [ContextHandler] Stopped o.s.j.s.ServletContextHandler@7772d266{/jobs,null,UNAVAILABLE}
[WARN] [YarnSchedulerBackend$YarnSchedulerEndpoint] Attempted to request executors before the AM has registered!
[WARN] [MetricsSystem] Stopping a MetricsSystem that is not running
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 1
        at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$$anonfun$setEnvFromInputString$1.apply(YarnSparkHadoopUtil.scala:154)
        at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$$anonfun$setEnvFromInputString$1.apply(YarnSparkHadoopUtil.scala:152)
        at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
        at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
        at org.apache.spark.deploy.yarn.YarnSparkHadoopUtil$.setEnvFromInputString(YarnSparkHadoopUtil.scala:152)
        at org.apache.spark.deploy.yarn.Client$$anonfun$setupLaunchEnv$6.apply(Client.scala:775)
        at org.apache.spark.deploy.yarn.Client$$anonfun$setupLaunchEnv$6.apply(Client.scala:773)
        at scala.Option.foreach(Option.scala:257)
        at org.apache.spark.deploy.yarn.Client.setupLaunchEnv(Client.scala:773)
        at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:867)
        at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:170)
        at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:56)
        at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:156)
        at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
        at org.apache.predictionio.workflow.WorkflowContext$.apply(WorkflowContext.scala:45)
        at org.apache.predictionio.workflow.CoreWorkflow$.runTrain(CoreWorkflow.scala:59)
        at org.apache.predictionio.workflow.CreateWorkflow$.main(CreateWorkflow.scala:250)
        at org.apache.predictionio.workflow.CreateWorkflow.main(CreateWorkflow.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:497)
        at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738)
        at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
        at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
是yarn的一个bug,没法正常处理空参数
 
解决方式:修改 spark-env.sh, 强制设置一个假参数,能够绕过这个问题
修改 spark/conf/spark-env.sh,增长下面这句话
export SPARK_YARN_USER_ENV="HADOOP_CONF_DIR=/home/hadoop/apache-hadoop/etc/hadoop"

 

5,yarn的软链接BUG
[WARN] [TaskSetManager] Lost task 3.0 in stage 173.0 (TID 250, bigdata01, executor 3): java.lang.Error: Multiple ES-Hadoop versions detected in the classpath; please use only one
jar:file:/home/hadoop/apache-hadoop/hadoop/var/yarn/local-dir/usercache/hadoop/appcache/application_1504083960020_0030/container_e235_1504083960020_0030_01_000005/universal-recommender-assembly-0.6.0-deps.jar
jar:file:/home/hadoop/apache-hadoop/hadoop-2.7.2/var/yarn/local-dir/usercache/hadoop/appcache/application_1504083960020_0030/container_e235_1504083960020_0030_01_000005/universal-recommender-assembly-0.6.0-deps.jar

        at org.elasticsearch.hadoop.util.Version.<clinit>(Version.java:73)
        at org.elasticsearch.hadoop.rest.RestService.createWriter(RestService.java:570)
        at org.elasticsearch.spark.rdd.EsRDDWriter.write(EsRDDWriter.scala:58)
        at org.elasticsearch.spark.rdd.EsSpark$$anonfun$doSaveToEs$1.apply(EsSpark.scala:107)
        at org.elasticsearch.spark.rdd.EsSpark$$anonfun$doSaveToEs$1.apply(EsSpark.scala:107)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:99)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)

这不知道算不算一个BUG,总之,yarn的配置中若是使用了软链接来指定hadoop文件夹的路径,将有可能发生此问题。参考 https://interset.zendesk.com/hc/en-us/articles/230751687-PhoenixToElasticSearchJob-Fails-with-Multiple-ES-Hadoop-versions-detected-in-the-classpath-bootstrap

解决方式也很简单,nodemanager修改全部采用Hadoop文件夹的软链接的配置,改成真正的路径便可。api

 

6,Spark的JOB执行出错app

[WARN] [Utils] Service 'sparkDriver' could not bind on port 0. Attempting port 1.
[ERROR] [SparkContext] Error initializing SparkContext.
Exception in thread "main" java.net.BindException: Cannot assign requested address: Service 'sparkDriver' failed after 60 retries (starting from 0)! Consider explicitly setting the appropriate port for the service 'sparkDriver' (for example spark.ui.port for SparkUI) to an available port or increasing spark.port.maxRetries.
        at sun.nio.ch.Net.bind0(Native Method)
        at sun.nio.ch.Net.bind(Net.java:437)
        at sun.nio.ch.Net.bind(Net.java:429)
        at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:223)
        at io.netty.channel.socket.nio.NioServerSocketChannel.doBind(NioServerSocketChannel.java:127)
        at io.netty.channel.AbstractChannel$AbstractUnsafe.bind(AbstractChannel.java:501)
        at io.netty.channel.DefaultChannelPipeline$HeadContext.bind(DefaultChannelPipeline.java:1218)
        at io.netty.channel.AbstractChannelHandlerContext.invokeBind(AbstractChannelHandlerContext.java:506)
        at io.netty.channel.AbstractChannelHandlerContext.bind(AbstractChannelHandlerContext.java:491)
        at io.netty.channel.DefaultChannelPipeline.bind(DefaultChannelPipeline.java:965)
        at io.netty.channel.AbstractChannel.bind(AbstractChannel.java:210)
        at io.netty.bootstrap.AbstractBootstrap$2.run(AbstractBootstrap.java:353)
        at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:408)
        at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:455)
        at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:140)
        at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)
        at java.lang.Thread.run(Thread.java:745)
这个错误,网上的有不少文章让修改spark-env.sh ,增长 export SPARK_LOCAL_IP="127.0.0.1"
但这些网文其实只适用于单机SPARK的状况。这个IP是SPARK回调本机的地址,因此应该设置为本机的IP地址(用ifconfig查看本机真实IP)
相关文章
相关标签/搜索