redis是一个著名的key-value存储系统,而做为其官方推荐的java版客户端jedis也很是强大和稳定,支持事务、管道及有jedis自身实现的分布式。
在这里对jedis关于事务、管道和分布式的调用方式作一个简单的介绍和对比:
1、普通同步方式
最简单和基础的调用方式, java
@Test public void test1Normal() { Jedis jedis = new Jedis("localhost"); long start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { String result = jedis.set("n" + i, "n" + i); } long end = System.currentTimeMillis(); System.out.println("Simple SET: " + ((end - start)/1000.0) + " seconds"); jedis.disconnect(); }
很简单吧,每次set以后均可以返回结果,标记是否成功。
2、事务方式(Transactions)
redis的事务很简单,他主要目的是保障,一个client发起的事务中的命令能够连续的执行,而中间不会插入其余client的命令。
看下面例子: redis
@Test public void test2Trans() { Jedis jedis = new Jedis("localhost"); long start = System.currentTimeMillis(); Transaction tx = jedis.multi(); for (int i = 0; i < 100000; i++) { tx.set("t" + i, "t" + i); } List<Object> results = tx.exec(); long end = System.currentTimeMillis(); System.out.println("Transaction SET: " + ((end - start)/1000.0) + " seconds"); jedis.disconnect(); }
咱们调用jedis.watch(…)方法来监控key,若是调用后key值发生变化,则整个事务会执行失败。另外,事务中某个操做失败,并不会回滚其余操做。这一点须要注意。还有,咱们可使用discard()方法来取消事务。
3、管道(Pipelining)
有时,咱们须要采用异步方式,一次发送多个指令,不一样步等待其返回结果。这样能够取得很是好的执行效率。这就是管道,调用方法以下:
sql
@Test public void test3Pipelined() { Jedis jedis = new Jedis("localhost"); Pipeline pipeline = jedis.pipelined(); long start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { pipeline.set("p" + i, "p" + i); } List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); System.out.println("Pipelined SET: " + ((end - start)/1000.0) + " seconds"); jedis.disconnect(); }
4、管道中调用事务
就Jedis提供的方法而言,是能够作到在管道中使用事务,其代码以下:
安全
@Test public void test4combPipelineTrans() { jedis = new Jedis("localhost"); long start = System.currentTimeMillis(); Pipeline pipeline = jedis.pipelined(); pipeline.multi(); for (int i = 0; i < 100000; i++) { pipeline.set("" + i, "" + i); } pipeline.exec(); List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); System.out.println("Pipelined transaction: " + ((end - start)/1000.0) + " seconds"); jedis.disconnect(); }
可是经测试(见本文后续部分),发现其效率和单独使用事务差很少,甚至还略微差点。
5、分布式直连同步调用
服务器
@Test public void test5shardNormal() { List<JedisShardInfo> shards = Arrays.asList( new JedisShardInfo("localhost",6379), new JedisShardInfo("localhost",6380)); ShardedJedis sharding = new ShardedJedis(shards); long start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { String result = sharding.set("sn" + i, "n" + i); } long end = System.currentTimeMillis(); System.out.println("Simple@Sharing SET: " + ((end - start)/1000.0) + " seconds"); sharding.disconnect(); }
这个是分布式直接链接,而且是同步调用,每步执行都返回执行结果。相似地,还有异步管道调用。
6、分布式直连异步调用
异步
@Test public void test6shardpipelined() { List<JedisShardInfo> shards = Arrays.asList( new JedisShardInfo("localhost",6379), new JedisShardInfo("localhost",6380)); ShardedJedis sharding = new ShardedJedis(shards); ShardedJedisPipeline pipeline = sharding.pipelined(); long start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { pipeline.set("sp" + i, "p" + i); } List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); System.out.println("Pipelined@Sharing SET: " + ((end - start)/1000.0) + " seconds"); sharding.disconnect(); }
7、分布式链接池同步调用 (适用于2.2及如下版本)
若是,你的分布式调用代码是运行在线程中,那么上面两个直连调用方式就不合适了,由于直连方式是非线程安全的,这个时候,你就必须选择链接池调用。 nosql
@Test public void test7shardSimplePool() { List<JedisShardInfo> shards = Arrays.asList( new JedisShardInfo("localhost",6379), new JedisShardInfo("localhost",6380)); ShardedJedisPool pool = new ShardedJedisPool(new JedisPoolConfig(), shards); ShardedJedis one = pool.getResource(); long start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { String result = one.set("spn" + i, "n" + i); } long end = System.currentTimeMillis(); pool.returnResource(one); System.out.println("Simple@Pool SET: " + ((end - start)/1000.0) + " seconds"); pool.destroy(); }
上面是同步方式,固然还有异步方式。
8、分布式链接池异步调用 (适用于2.2及如下版本)
分布式
@Test public void test8shardPipelinedPool() { List<JedisShardInfo> shards = Arrays.asList( new JedisShardInfo("localhost",6379), new JedisShardInfo("localhost",6380)); ShardedJedisPool pool = new ShardedJedisPool(new JedisPoolConfig(), shards); ShardedJedis one = pool.getResource(); ShardedJedisPipeline pipeline = one.pipelined(); long start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { pipeline.set("sppn" + i, "n" + i); } List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); pool.returnResource(one); System.out.println("Pipelined@Pool SET: " + ((end - start)/1000.0) + " seconds"); pool.destroy(); }
9、须要注意的地方
事务和管道都是异步模式。在事务和管道中不能同步查询结果。好比下面两个调用,都是不容许的: 性能
Transaction tx = jedis.multi(); for (int i = 0; i < 100000; i++) { tx.set("t" + i, "t" + i); } System.out.println(tx.get("t1000").get()); //不容许 List<Object> results = tx.exec(); … … Pipeline pipeline = jedis.pipelined(); long start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { pipeline.set("p" + i, "p" + i); } System.out.println(pipeline.get("p1000").get()); //不容许 List<Object> results = pipeline.syncAndReturnAll();
事务和管道都是异步的,我的感受,在管道中再进行事务调用,没有必要,不如直接进行事务模式。
分布式中,链接池的性能比直连的性能略好(见后续测试部分)。
分布式调用中不支持事务。
由于事务是在服务器端实现,而在分布式中,每批次的调用对象均可能访问不一样的机器,因此,无法进行事务。
10、测试
运行上面的代码,进行测试,其结果以下:
Simple SET: 5.227 seconds
Transaction SET: 0.5 seconds
Pipelined SET: 0.353 seconds
Pipelined transaction: 0.509 seconds
Simple@Sharing SET: 5.289 seconds
Pipelined@Sharing SET: 0.348 seconds
Simple@Pool SET: 5.039 seconds
Pipelined@Pool SET: 0.401 seconds
另外,经测试分布式中用到的机器越多,调用会越慢。上面是2片,下面是5片:
Simple@Sharing SET: 5.494 seconds
Pipelined@Sharing SET: 0.51 seconds
Simple@Pool SET: 5.223 seconds
Pipelined@Pool SET: 0.518 seconds
下面是10片:
Simple@Sharing SET: 5.9 seconds
Pipelined@Sharing SET: 0.794 seconds
Simple@Pool SET: 5.624 seconds
Pipelined@Pool SET: 0.762 seconds
下面是100片:
Simple@Sharing SET: 14.055 seconds
Pipelined@Sharing SET: 8.185 seconds
Simple@Pool SET: 13.29 seconds
Pipelined@Pool SET: 7.767 seconds
分布式中,链接池方式调用不但线程安全外,根据上面的测试数据,也能够看出链接池比直连的效率更好。
11、完整的测试代码
测试
package com.example.nosqlclient; import java.util.Arrays; import java.util.List; import org.junit.AfterClass; import org.junit.BeforeClass; import org.junit.Test; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPoolConfig; import redis.clients.jedis.JedisShardInfo; import redis.clients.jedis.Pipeline; import redis.clients.jedis.ShardedJedis; import redis.clients.jedis.ShardedJedisPipeline; import redis.clients.jedis.ShardedJedisPool; import redis.clients.jedis.Transaction; import org.junit.FixMethodOrder; import org.junit.runners.MethodSorters; @FixMethodOrder(MethodSorters.NAME_ASCENDING) public class TestJedis { private static Jedis jedis; private static ShardedJedis sharding; private static ShardedJedisPool pool; @BeforeClass public static void setUpBeforeClass() throws Exception { List<JedisShardInfo> shards = Arrays.asList( new JedisShardInfo("localhost",6379), new JedisShardInfo("localhost",6379)); //使用相同的ip:port,仅做测试 jedis = new Jedis("localhost"); sharding = new ShardedJedis(shards); pool = new ShardedJedisPool(new JedisPoolConfig(), shards); } @AfterClass public static void tearDownAfterClass() throws Exception { jedis.disconnect(); sharding.disconnect(); pool.destroy(); } @Test public void test1Normal() { long start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { String result = jedis.set("n" + i, "n" + i); } long end = System.currentTimeMillis(); System.out.println("Simple SET: " + ((end - start)/1000.0) + " seconds"); } @Test public void test2Trans() { long start = System.currentTimeMillis(); Transaction tx = jedis.multi(); for (int i = 0; i < 100000; i++) { tx.set("t" + i, "t" + i); } //System.out.println(tx.get("t1000").get()); List<Object> results = tx.exec(); long end = System.currentTimeMillis(); System.out.println("Transaction SET: " + ((end - start)/1000.0) + " seconds"); } @Test public void test3Pipelined() { Pipeline pipeline = jedis.pipelined(); long start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { pipeline.set("p" + i, "p" + i); } //System.out.println(pipeline.get("p1000").get()); List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); System.out.println("Pipelined SET: " + ((end - start)/1000.0) + " seconds"); } @Test public void test4combPipelineTrans() { long start = System.currentTimeMillis(); Pipeline pipeline = jedis.pipelined(); pipeline.multi(); for (int i = 0; i < 100000; i++) { pipeline.set("" + i, "" + i); } pipeline.exec(); List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); System.out.println("Pipelined transaction: " + ((end - start)/1000.0) + " seconds"); } @Test public void test5shardNormal() { long start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { String result = sharding.set("sn" + i, "n" + i); } long end = System.currentTimeMillis(); System.out.println("Simple@Sharing SET: " + ((end - start)/1000.0) + " seconds"); } @Test public void test6shardpipelined() { ShardedJedisPipeline pipeline = sharding.pipelined(); long start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { pipeline.set("sp" + i, "p" + i); } List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); System.out.println("Pipelined@Sharing SET: " + ((end - start)/1000.0) + " seconds"); } @Test public void test7shardSimplePool() { ShardedJedis one = pool.getResource(); long start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { String result = one.set("spn" + i, "n" + i); } long end = System.currentTimeMillis(); pool.returnResource(one); System.out.println("Simple@Pool SET: " + ((end - start)/1000.0) + " seconds"); } @Test public void test8shardPipelinedPool() { ShardedJedis one = pool.getResource(); ShardedJedisPipeline pipeline = one.pipelined(); long start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { pipeline.set("sppn" + i, "n" + i); } List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); pool.returnResource(one); System.out.println("Pipelined@Pool SET: " + ((end - start)/1000.0) + " seconds"); } }