JavaShuo
栏目
标签
Distilling transformers into simple neural networks with unlabeled transfer data论文解读
时间 2021-01-02
标签
NLP
自然语言处理
深度学习
繁體版
原文
原文链接
Distilling transformers into simple neural networks with unlabeled transfer data 论文地址:https://arxiv.org/pdf/1910.01769.pdf motivation 一般来说,蒸馏得到的student模型与teacher模型的准确率还存在差距。文章利用大量in-domain unlabeled t
>>阅读原文<<
相关文章
1.
Weakly supervised object recognition with convolutional neural networks 论文解读
2.
论文--阅读翻译笔记-Reducing the Dimensionality of Data with Neural Networks
3.
[论文翻译]Reducing the Dimensionality of Data with Neural Networks
4.
【论文精读】Knowledge Transfer with Jacobian Matching
5.
论文阅读:Incorporating dictionaries into deep neural networks for the Chinese clinical NER
6.
SESSION-BASED RECOMMENDATIONS WITH RECURRENT NEURAL NETWORKS论文解读
7.
论文解读Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks
8.
[论文解读]SuperGlue: Learning Feature Matching with Graph Neural Networks
9.
[论文解读]TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing
10.
Deep Learning 论文解读——Session-based Recommendations with Recurrent Neural Networks
更多相关文章...
•
C# 文本文件的读写
-
C#教程
•
ASP Transfer 方法
-
ASP 教程
•
JDK13 GA发布:5大特性解读
•
Scala 中文乱码解决
相关标签/搜索
论文解读
networks
transformers
unlabeled
distilling
transfer
neural
论文阅读
simple
data
Thymeleaf 教程
Spring教程
MyBatis教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
python的安装和Hello,World编写
2.
重磅解读:K8s Cluster Autoscaler模块及对应华为云插件Deep Dive
3.
鸿蒙学习笔记2(永不断更)
4.
static关键字 和构造代码块
5.
JVM笔记
6.
无法启动 C/C++ 语言服务器。IntelliSense 功能将被禁用。错误: Missing binary at c:\Users\MSI-NB\.vscode\extensions\ms-vsc
7.
【Hive】Hive返回码状态含义
8.
Java树形结构递归(以时间换空间)和非递归(以空间换时间)
9.
数据预处理---缺失值
10.
都要2021年了,现代C++有什么值得我们学习的?
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Weakly supervised object recognition with convolutional neural networks 论文解读
2.
论文--阅读翻译笔记-Reducing the Dimensionality of Data with Neural Networks
3.
[论文翻译]Reducing the Dimensionality of Data with Neural Networks
4.
【论文精读】Knowledge Transfer with Jacobian Matching
5.
论文阅读:Incorporating dictionaries into deep neural networks for the Chinese clinical NER
6.
SESSION-BASED RECOMMENDATIONS WITH RECURRENT NEURAL NETWORKS论文解读
7.
论文解读Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks
8.
[论文解读]SuperGlue: Learning Feature Matching with Graph Neural Networks
9.
[论文解读]TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing
10.
Deep Learning 论文解读——Session-based Recommendations with Recurrent Neural Networks
>>更多相关文章<<