频繁项集挖掘之apriori和fp-growth

Apriori和fp-growth是频繁项集(frequent itemset mining)挖掘中的两个经典算法,主要的区别在于一个是广度优先的方式,另一个是深度优先的方式,后一种是基于前一种效率较低的背景下提出来的,虽然都是十几年前的,但是理解这两个算法对数据挖掘和学习算法都有很大好处。在理解这两个算法之前,应该先了解频繁项集挖掘是做什么用的。 频繁项集挖掘是关联规则挖掘中的首要的子任务。关联
相关文章
相关标签/搜索