手把手教你发布 Python 项目开源包

图片

编译:机器之心,做者:Gabriel Lerner、Nathan Toubianahtml

好不容易码了个 python 项目,是否是很兴奋?那么怎么把这个项目发出去让你们看到呢?本文做者写了一份在 GitHub 上发布 python 包的简单分步指南。

做者以 SciTime 项目(一个对算法训练时间进行估计的包)的发布为例,详细解释了发布的每一个步骤。python


注意:本文假设你在 GitHub 上已经有一个想要打包和发布的项目。git


第 0 步:获取项目许可证github


在作其余事以前,因为你的项目要开源,所以应该有一个许可证。获取哪一种许可证取决于项目包的使用方式。开源项目中一些常见许可证有 MIT 或 BSD。web


要在项目中添加许可证,只需参照如下连接中的步骤,将 LICENSE 文件添加到项目库中的根目录便可:https://help.github.com/en/articles/adding-a-license-to-a-repository算法


第 1 步:让你的代码准备就绪json

 

要将项目进行打包,你须要作一些预备工做:markdown

 

  • 让你的项目结构正确就位。一般状况下,项目库的根目录包含一个以项目名称命名的文件夹,项目的核心代码应该位于此文件夹中。在这个文件夹以外是运行和构建包(测试、文档等)所需的其余代码。app

  • 核心文件夹应包括一个(或多个)模块和一个 __init__.py 文件,该文件包含你但愿让终端用户访问的类/函数。此文件还能够包含包的版本,以便于终端用户访问。框架

  •  理想状况下,应使用 logging 包来设置合理的日志记录系统(而不是用 prints 输出)。

  •  理想状况下,应将你的核心代码分配到一个或多个类中。


from .estimate import Estimator


以__init__.py 为例,若是 Estimator 是终端用户将会访问的类(该类在 estimate.py 文件中定义)


import logging


class LogMixin(object):
    @property
    def logger(self):
        name 
'.'.join([self.__module__, self.__class__.__name__])
        FORMAT = '%(name)s:%(levelname)s:%(message)s'
        logging.basicConfig(format=FORMAT, level=logging.DEBUG)
        logger = logging.getLogger(name)
        return logger


以日志系统为例:LogMixin 类能够在其余任何类中使用


第 2 步:使用打包工具建立 setup.py

 

在你的项目有了一套结构以后,你应该在项目库的根目录下添加 setup.py 文件。这有助于全部发布和版本维护过程的自动化。如下是 setup.py 的例子(源代码:https://github.com/nathan-toubiana/scitime/blob/master/setup.py)。


from setuptools import setup
from os import path

DIR = path.dirname(path.abspath(__file__))
INSTALL_PACKAGES = open(path.join(DIR, 'requirements.txt')).read().splitlines()

with open(path.join(DIR, 'README.md')) as f:
    README = f.read()

setup(
    name='scitime',
    packages=['scitime'],
    description="Training time estimator for scikit-learn algorithms",
    long_description=README,
    long_description_content_type='text/markdown',
    install_requires=INSTALL_PACKAGES,
    version='0.0.2',
    url='http://github.com/nathan-toubiana/scitime',
    author='Gabriel Lerner & Nathan Toubiana',
    author_email='toubiana.nathan@gmail.com',
    keywords=['machine-learning''scikit-learn''training-time'],
    tests_require=[
        'pytest',
        'pytest-cov',
        'pytest-sugar'
    ],
    package_data={
        # include json and pkl files
        '': ['*.json''models/*.pkl''models/*.json'],
    },
    include_package_data=True,
    python_requires='>=3'
)


setup.py 文件的示例


几点注意事项:


  • 若是你的包有依赖项,处理这些依赖项的简单方法是在配置文件中经过 install_requires 参数来添加依赖项(若是列表很长,你能够像以前那样指向一个 requirement.txt 文件)。

  • 若是你但愿在任何人安装包时(从项目库中)下载元数据,则应经过 package_data 参数来添加这些元数据。

  • 有关 setup() 函数的更多信息,请参见:https://setuptools.readthedocs.io/en/latest/setuptools.html

 

注意:第 3 步到第 6 步是可选的(但强烈推荐),可是若是你如今立刻想发布你的包,能够直接跳到第 7 步。


第 3 步:设置本地测试和检查测试覆盖率

 

此时尚未完成,你的项目还应该有单元测试。尽管有许多框架能帮助你作到,但一种简单的方法是使用 pytest。全部测试都应该放在一个专用的文件夹中(例如名为 tests/或 testing 的文件夹)。在这个文件夹中放置你须要的全部测试文件,以便尽量多地包含你的核心代码。下面是一个如何编写单元测试的示例。这里还有一个 SciTime 的测试文件。

 

一旦就位,你就能够经过在项目库的根目录运行 python -m pytest 在本地进行测试。

 

建立测试后,你还应该能估算覆盖率。这一点很重要,由于你但愿尽量多地测试项目中的代码量(以减小意外的 bug)。


不少框架也能够用于计算覆盖率,对于 SciTime,咱们使用了 codecov。你能够经过建立.codecov.yml 文件来决定容许的最小覆盖率阈值,还能够经过建立.coveragerc 文件来决定要在覆盖率分析中包含哪些文件。


comment: false

coverage:
  status:
    project:
      default:
        target: auto
        threshold: 10%
    patch:
      default:
        target: auto
        threshold: 10%


.codecov.yml 文件示例


[run]
branch = True
source = scitime
include = */scitime/*
omit =
    */_data.py
    */
setup.py


.coveragerc 文件示例


第 4 步:标准化语法和代码风格


你还须要确保你的代码遵循 PEP8 准则(即具备标准样式而且语法正确)。一样,有不少工具能够帮助你解决。这里咱们用了 flake8。


第 5 步:建立一个合理的文档

 

如今你的项目已经测试过了,结构也很好了,是时候添加一个合理的文档。首先是要有一个好的 readme 文件,它会在你的 Github 项目库的根目录上显示。完成后,加上如下几点会更好:

 

  • Pull 请求和 issue 模板:当建立新的 Pull 请求或 issue 时,这些文件能够根据你的需求给你的描述提供模板。

  •       Pull 请求建立步骤:https://help.github.com/en/articles/creating-a-pull-request-template-for-your-repository

  •       issue 建立步骤:https://help.github.com/en/articles/manually-creating-a-single-issue-template-for-your-repository

  •        Pull 请求模板:https://github.com/nathan-toubiana/scitime/blob/master/.github/PULL_REQUEST_TEMPLATE.md

  •        issue 模板:https://github.com/nathan-toubiana/scitime/tree/master/.github/ISSUE_TEMPLATE

  • 贡献指南(contribution guide)。应该在贡献指南中简单地说明你但愿外部用户如何协助你改进这个包。Scitime 的贡献指南参见:https://github.com/nathan-toubiana/scitime/blob/master/.github/CONTRIBUTING.md。

  • 准则,Scitime 的准则参见:https://github.com/nathan-toubiana/scitime/blob/master/.github/CODE_OF_CONDUCT.md

  • 标签和说明(见下面的截图)

  • readme 文件中的标签(推荐一篇如何使用标签的好文章:https://medium.freecodecamp.org/how-to-use-badges-to-stop-feeling-like-a-noob-d4e6600d37d2)。


因为 readme 文件应该至关综合,所以一般会有一个更详细的文档。你能够用 sphinx 来完成,而后在 readthedocs 上管理文档。与文档相关的文件一般放在 docs/文件夹中。sphinx 和 readthedocs 相关教程:https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html。


图片

包含标签和说明的项目库示例


第 6 步:建立持续集成

 

此时,你的项目离发布就绪不远了。可是,在每次提交以后,必须更新文档、运行测试以及检查样式和覆盖率彷佛有点难以应付。幸运的是,持续集成(CI)能够帮助你完成。你能够在每次提交以后使用 GitHub 的 webhook 来自动执行全部的这些操做。如下是咱们在 SciTime 中使用的一套 CI 工具:

 

  • 对于运行测试,咱们使用了 travis ci 和 appveyor(用于 Windows 平台上的测试)。对于 Travis CI,除了在项目库上设置 webhook 以外,你还必须建立一个.travis.yml 文件,在该文件中,你不只能够运行测试,还能够上传更新的覆盖率输出以及检查样式和格式。经过建立 appveyor.yml 文件,appveyor 也能够这样作。

  •  codecov 和 readthdocs 也有专用的 webhook


language: python
python:
  - "3.6"
# command to install dependencies
install:
  - pip install -r requirements.txt
  - pip install flake8
  - pip install pytest-cov
  - pip install codecov
# command to run tests
script:
  - python -m pytest --cov=scitime
  - ./build_tools/flake_diff.sh
after_success:
  - codecov


.travis.yml 文件的示例:请注意,每次提交,测试都须要与检查测试覆盖率一块儿进行。但还有一个 flake8 检查(逻辑则在 flake_diff.sh 文件中定义:https://github.com/nathan-toubiana/scitime/blob/master/build_tools/flake_diff.sh)


environment:

  matrix:

    - PYTHON: "C:\\Python36-x64"

install:
  # We need wheel installed to build wheels
  - "%PYTHON%\\python.exe -m pip install -r requirements.txt"
  - "%PYTHON%\\python.exe -m pip install pytest==3.2.1"


build: off

test_script:

  - "%PYTHON%\\python.exe -m pytest"


appveyor.yml 文件示例:这里咱们只运行测试


这将使更新项目库的整个过程更加容易。


图片

集成 webhook 的提交历史记录示例


第 7 步:建立你的第一个 release 和 publication


此时,你即将发布的包应与如下相似:


your_package/
   __init__.py
   your_module.py
docs/
tests/
setup.py
travis.yml
appveyor.yml
.coveragerc
.codecov.yml
README.md
LICENSE
.github/
   CODE_OF_CONDUCT.md
   CONTRIBUTING.md
   PULL_REQUEST_TEMPLATE.md
   ISSUE_TEMPLATE/


如今能够发布了!首先要作的是在 GitHub 上建立你的第一个 release——这是为了在给定的时间点跟踪项目的状态,每次版本更改时都须要建立新的 release。建立步骤:https://help.github.com/en/articles/creating-releases。

 

完成后,惟一要作的就是发布包。发布 python 包最多见的平台是 PyPI 和 Conda。如下咱们将描述如何用二者发布:


  • 对于 PyPI,首先须要建立一个账户,而后用 twine 执行一些步骤:https://realpython.com/pypi-publish-python-package/。这应该至关简单,并且 Pypi 还提供了一个能够在实际部署以前使用的测试环境。PyPI 整体上包括建立源代码(python setup.py sdist)并使用 twine(twine upload dist/*)来上传。完成后,应该有一个与你的包对应的 PyPI 页面,而且任何人都应该可以经过运行 pip 命令来安装你的包。

  •  对于 Conda,咱们推荐经过 conda forge 来发布你的包,conda forge 是一个社区,帮助你经过 conda 渠道发布和维护包。你能够按照如下步骤将包添加到社区:https://conda-forge.org/#add_recipe,而后你会被添加到 conda forge Github 组织中,并可以很是轻松地维护你的包,而后任何人均可以经过运行 conda 命令来安装你的包。

 

完成!


如今,你的包应该已经发出去,而且任何人均可以使用了!虽然大部分工做都完成了,可是你仍然须要维护你的项目,你须要进行一些更新:这大致上意味着每次进行重大更改时都要更改版本,建立新的 release,并再次执行第 7 步。


原文连接:https://medium.freecodecamp.org/from-a-python-project-to-an-open-source-package-an-a-to-z-guide-c34cb7139a22

有关 Scitime 的详细信息参见:

https://medium.com/m/global-identity?redirectUrl=https%3A%2F%2Fmedium.freecodecamp.org%2Ftwo-hours-later-and-still-running-how-to-keep-your-sklearn-fit-under-control-cc603dc1283b%3Fsource%3Dfriends_link%26sk%3D98e79add47516c38eeec59cf755df938)

相关文章
相关标签/搜索