运行PyTorch能够直接逻辑运行、容器中运行、KubeFlow中运行以及基于JupyterHub(独立运行或运行在K8s之上)等多种模式。这里介绍运行在K8s上基于JupyterHub的PyTorch方法,这也是运行在云计算环境的推荐方法。若是须要使用GPU,则须要安装NVidia或AMD的Kubernetes下容器GPU支持,宿主机也必须同时安装GPU驱动。git
conda install numpy conda install scikit-image conda install pytorch torchvision cudatoolkit=10.0 -c pytorch # or: conda install pytorch-cpu torchvision-cpu -c pytorch conda update --all
获取教程数据:github
使用Notebook:dom
# 导入支持库 import torch # 确认CUDA支持及其版本 print(torch.version.cuda)
10.0.130
# 查看pytorch帮助 help(torch)
Help on package torch: NAME torch DESCRIPTION The torch package contains data structures for multi-dimensional tensors and mathematical operations over these are defined. Additionally, it provides many utilities for efficient serializing of Tensors and arbitrary types, and other useful utilities. It has a CUDA counterpart, that enables you to run your tensor computations on an NVIDIA GPU with compute capability >= 3.0. PACKAGE CONTENTS _C _dl _jit_internal _nvrtc _ops _six _storage_docs _tensor_docs _tensor_str _thnn (package) _torch_docs _utils _utils_internal autograd (package) backends (package) contrib (package) cuda (package) distributed (package) distributions (package) for_onnx (package) functional hub jit (package) multiprocessing (package) nn (package) onnx (package) optim (package) random serialization sparse (package) storage tensor testing (package) utils (package) version ......