忘掉 Snowflake,感觉一下性能高出 587 倍的全局惟一 ID 生成算法

今天咱们来拆解 Snowflake 算法,同时领略百度、美团、腾讯等大厂在全局惟一 ID 服务方面作的设计,接着根据具体需求设计一款全新的全局惟一 ID 生成算法。这还不够,咱们会讨论到全局惟一 ID 服务的分布式 CAP 选择与性能瓶颈。html

已经熟悉 Snowflake 的朋友能够先去看大厂的设计和权衡。git

百度 UIDGenertor:github.com/baidu/uid-g…github

美团 Leaf:tech.meituan.com/2017/04/21/…算法

腾讯 Seqsvr: www.infoq.cn/article/wec…数据库

全局惟一 ID 是分布式系统和订单类业务系统中重要的基础设施。这里引用美团的描述:编程

在复杂分布式系统中,每每须要对大量的数据和消息进行惟一标识。如在美团点评的金融、支付、餐饮、酒店、猫眼电影等产品的系统中,数据日渐增加,对数据分库分表后须要有一个惟一 ID 来标识一条数据或消息,数据库的自增 ID 显然不能知足需求;特别一点的如订单、骑手、优惠券也都须要有惟一 ID 作标识。数组

这时候你可能会问:我仍是不懂,为何必定要全局惟一 ID?缓存

我再列举一个场景,在 MySQL 分库分表的条件下,MySQL 没法作到依次、顺序、交替地生成 ID,这时候要保证数据的顺序,全局惟一 ID 就是一个很好的选择。安全

在爬虫场景中,这条数据在进入数据库以前会进行数据清洗、校验、矫正、分析等多个流程,这期间有必定几率发生重试或设为异常等操做,也就是说在进入数据库以前它就须要有一个 ID 来标识它。性能优化

全局惟一 ID 应当具有什么样的属性,才可以知足上述的场景呢?

美团技术团队列出的 4 点属性我以为很准确,它们是:

  1. 全局惟一性:不能出现重复的 ID 号,既然是惟一标识,这是最基本的要求;
  2. 趋势递增:在 MySQL InnoDB 引擎中使用的是汇集索引,因为多数 RDBMS 使用 B-tree 的数据结构来存储索引数据,在主键的选择上面咱们应该尽可能使用有序的主键保证写入性能;
  3. 单调递增:保证下一个 ID 必定大于上一个 ID,例如事务版本号、IM 增量消息、排序等特殊需求;
  4. 信息安全:若是 ID 是连续的,恶意用户的爬取工做就很是容易作了,直接按照顺序下载指定 URL 便可;若是是订单号就更危险了,竞争对手能够直接知道咱们一天的单量。因此在一些应用场景下,会须要 ID 无规则、不规则。

看上去第 3 点和第 4 点彷佛还存在些许冲突,这个后面再说。除了以上列举的 ID 属性外,基于这个生成算法构建的服务还须要买足高 QPS、高可用性和低延迟的几个要求。

业内常见的 ID 生成方式有哪些?

你们在念书的时候确定都学过 UUIDGUID,它们生成的值看上去像这样:

6F9619FF-8B86-D011-B42D-00C04FC964FF
复制代码

因为不是纯数字组成,这就没法知足趋势递增和单调递增这两个属性,同时在写入时也会下降写入性能。上面提到了数据库自增 ID 没法知足入库前使用和分布式场景下的需求,遂排除。

有人提出了借助 Redis 来实现,例如订单号=日期+当日自增加号,自增加经过 INCR 实现。但这样操做的话又没法知足编号不可猜想需求。

这时候有人提出了 MongoDB 的 ObjectID,不要忘了它生成的 ID 是这样的: 5b6b3171599d6215a8007se0,和 UUID 同样没法知足递增属性,且和 MySQL 同样要入库后才能生成。

难道就没有能打的了吗

大名鼎鼎的 Snowflake

Twitter 于 2010 年开源了内部团队在用的一款全局惟一 ID 生成算法 Snowflake,翻译过来叫作雪花算法。Snowflake 不借助数据库,可直接由编程语言生成,它经过巧妙的位设计使得 ID 可以知足递增属性,且生成的 ID 并非依次连续的,可以知足上面提到的全局惟一 ID 的 4 个属性。它连续生成的 3 个 ID 看起来像这样:

563583455628754944
563583466173235200
563583552944996352
复制代码

Snowflake 以 64 bit 来存储组成 ID 的4 个部分:

一、最高位占1 bit,值固定为 0,以保证生成的 ID 为正数;

二、中位占 41 bit,值为毫秒级时间戳;

三、中下位占 10 bit,值为工做机器的 ID,值的上限为 1024;

四、末位占 12 bit,值为当前毫秒内生成的不一样 ID,值的上限为 4096;

Snowflake 的代码实现网上有不少款,基本上各大语言都能找到实现参考。我以前在作实验的时候在网上找到一份 Golang 的代码实现:

代码可在个人 Gist 查看和下载。

Snowflake 存在的问题

snowflake 不依赖数据库,也不依赖内存存储,随时可生成 ID,这也是它如此受欢迎的缘由。但由于它在设计时经过时间戳来避免对内存和数据库的依赖,因此它依赖于服务器的时间。上面咱们提到了 Snowflake 的 4 段结构,实际上影响 ID 大小的是较高位的值,因为最高位固定为 0,遂影响 ID 大小的是中位的值,也就是时间戳。

试想,服务器的时间发生了错乱或者回拨,这就直接影响到生成的 ID,有很大几率生成重复的 ID必定会打破递增属性。这是一个致命缺点,你想一想,支付订单和购买订单的编号重复,这是多么严重的问题!

另外,因为它的中下位末位 bit 数限制,它每毫秒生成 ID 的上限严重受到限制。因为中位是 41 bit 的毫秒级时间戳,因此从当前起始到 41 bit 耗尽,也只能坚持 70 年

再有,程序获取操做系统时间会耗费较多时间,相比于随机数和常数来讲,性能相差太远,这是制约它生成性能的最大因素

一线企业如何解决全局惟一 ID 问题

长话短说,咱们来看看百度、美团、腾讯(微信)是如何作的。

百度团队开源了 UIDGenerator 算法.

它经过借用将来时间和双 Buffer 来解决时间回拨与生成性能等问题,同时结合 MySQL 进行 ID 分配。这是一种基于 Snowflake 的优化操做,是一个好的选择,你认为这是否是优选呢?

美团团队根据业务场景提出了基于号段思想的 Leaf-Segment 方案和基于 Snowflake 的 Leaf-Snowflake 方案.

出现两种方案的缘由是 Leaf-Segment 并无知足安全属性要求,容易被猜想,没法用在对外开放的场景(如订单)。Leaf-Snowflake 经过文件系统缓存下降了对 ZooKeeper 的依赖,同时经过对时间的比对和警报来应对 Snowflake 的时间回拨问题。这两种都是一个好的选择,你认为这是否是优选呢?

微信团队业务特殊,它有一个用 ID 来标记消息的顺序的场景,用来确保咱们收到的消息就是有序的。在这里不是全局惟一 ID,而是单个用户全局惟一 ID,只须要保证这个用户发送的消息的 ID 是递增便可。

这个项目叫作 Seqsvr,它并无依赖时间,而是经过自增数和号段来解决生成问题的。这是一个好的选择,你认为这是否是优选呢?

性能高出 Snowflake 587 倍的算法是如何设计的?

在了解 Snowflake 的优缺点、阅读了百度 UIDGenertor、美团 Leaf 和腾讯微信 Seqsvr 的设计后,我但愿设计出一款可以知足全局惟一 ID 4 个属性且性能更高、使用期限更长、不受单位时间限制、不依赖时间的全局惟一 ID 生成算法。

这看起来很简单,但吸取所学知识、设计、实践和性能优化占用了我 4 个周末的时间。在我看来,这个算法的设计过程就像是液态的水转换为气状的雾同样,遂我给这个算法取名为薄雾(Mist)算法。接下来咱们来看看薄雾算法是如何设计和实现的。

位数是影响 ID 数值上限的主要因素,Snowflake 中下位和末位的 bit 数限制了单位时间内生成 ID 的上限,要解决这个两个问题,就必须从新设计 ID 的组成。

抛开中位,咱们先看看中下位和末位的设计。中下位的 10 bit 的值实际上是机器编号,末位 12 bit 的值实际上是单位时间(同一毫秒)内生成的 ID 序列号,表达的是这毫秒生成的第 5 个或第 150 个 数值,同时两者的组合使得 ID 的值变幻莫测,知足了安全属性。实际上并不须要记录机器编号,也能够不用管它究竟是单位时间内生成的第几个数值,安全属性咱们能够经过多组随机数组合的方式实现,随着数字的递增和随机数的变幻,经过 ID 猜顺序的难度是很高的。

最高位固定是 0,不须要对它进行改动。咱们来看看相当重要的中位,Snowflake 的中位是毫秒级时间戳,既然不打算依赖时间,那么确定也不会用时间戳,用什么呢?我选择自增数 1,2,3,4,5,...。中位决定了生成 ID 的上限和使用期限,若是沿用 41 bit,那么上限跟用时间戳的上限相差无几,通过计算后我选择采用与 Snowflake 的不一样的分段:

缩减中下位和末位的 bit 数,增长中位的 bit 数,这样就能够拥有更高的上限和使用年限,那上限和年限如今是多久呢?中位数值的上限计算公式为 int64(1<<47 - 1),计算结果为 140737488355327百万亿级的数值,假设天天消耗 10 亿 ID,薄雾算法能用 385+ 年,几辈子都用不完

中下位和末位都是 8 bit,数值上限是 255,即开闭区间是 [0, 255]。这两段若是用随机数进行填充,对应的组合方式有 256 * 256 种,且每次都会变化,猜想难度至关高。因为不像 Snowflake 那样须要计算末位的序列号,遂薄雾算法的代码并不长,具体代码可在个人 GitHub 仓库找到:

聊聊性能问题,获取时间戳是比较耗费性能的,不获取时间戳速度固然快了,那 500+ 倍是如何得来的呢?以 Golang 为例(我用 Golang 作过实验),Golang 随机数有三种生成方式:

  • 基于固定数值种子的随机数;
  • 将会变换的时间戳做为种子的随机数;
  • 大数真随机;

基于固定数值种子的随机数每次生成的值都是同样的,是伪随机,不可用在此处。将时间戳做为种子以生成随机数是目前 Golang 开发者的主流作法,实测性能约为 8800 ns/op。大数真随机知道的人比较少,实测性能 335ns/op,因而可知性能相差近 30 倍。

大数真随机也有必定的损耗,若是想要将性能提高到顶点,只须要将中下位和末位的随机数换成常数便可,常数实测性能 15ns/op,是时间戳种子随机数的 587 倍。

要注意的是,将常数放到中下位和末位的性能是很高,可是猜想难度也相应降低。

薄雾算法的依赖问题

薄雾算法为了避开时间依赖,不得不依赖存储,中位自增的数值只能在内存中存活,遂须要依赖存储将自增数值存储起来,避免由于宕机或程序异常形成重复 ID 的事故。

看起来是这样,但它真的是依赖存储吗?

你想一想,这么重要的服务一定要求高可用,不管你用 Twitter 仍是百度或者美团、腾讯微信的解决方案,在架构上必定都是高可用的,高可用必定须要存储。在这样的背景下,薄雾算法的依赖其实并非额外的依赖,而是能够与架构彻底融合到一块儿的设计。

薄雾算法和 Redis 的结合

既然提出了薄雾算法,怎么能不提供真实可用的工程实践呢?在编写完薄雾算法以后,我就开始了工程实践的工做,将薄雾算法与 KV 存储结合到一块儿,提供全局惟一 ID 生成服务。这里我选择了较为熟悉的 Redis,Mist 与 Redis 的结合,我为这个项目取的名字为 Medis。

性能高并非编造出来的,咱们看看它 Jemeter 压测参数和结果:

以上是 Medis README 中给出的性能测试截图,在大基数条件下的性能约为 2.5w/sec。这么高的性能除了薄雾算法自己高性能以外,Medis 的设计也做出了很大贡献:

  • 使用 Channel 做为数据缓存,这个操做使得发号服务性能提高了 7 倍;
  • 采用预存预取的策略保证 Channel 在大多数状况下都有值,从而可以迅速响应客户端发来的请求;
  • Gorouting 去执行耗费时间的预存预取操做,不会影响对客户端请求的响应;
  • 采用 Lrange Ltrim 组合从 Redis 中批量取值,这比循环单次读取或者管道批量读取的效率更高;
  • 写入 Redis 时采用管道批量写入,效率比循环单次写入更高;
  • Seqence 值的计算在预存前进行,这样就不会耽误对客户端请求的响应,虽然薄雾算法的性能是纳秒级别,但并发高的时候也形成一些性能损耗,放在预存时计算显然更香;
  • 得益于 Golang Echo 框架和 Golang 自己的高性能,整套流程下来我很满意,若是要追求极致性能,我推荐你们试试 Rust;

Medis 服务启动流程和接口访问流程图下所示:

感兴趣的朋友能够下载体验一下,启动 Medis 根目录的 server.go 后,访问 http://localhost:1558/sequence 便能拿到全局惟一 ID。

高可用架构和分布式性能

分布式 CAP (一致性、可用性、分区容错性)已成定局,这类服务一般追求的是可用性架构(AP)。因为设计中采用了预存预取,且要保持总体顺序递增,遂单机提供访问是优选,即分布式架构下的性能上限就是提供服务的那台主机的单机性能。

你想要实现分布式多机提供服务?

这样的需求要改动 Medis 的逻辑,同时也须要改动各应用之间的组合关系。若是要实现分布式多机同时提供服务,那么就要废弃 Redis 和 Channel 预存预取机制,接着放弃 Channel 而改用即时生成,这样即可以同时使用多个 Server,但性能的瓶颈就转移到了 KV 存储(这里是 Redis),性能等同于单机 Redis 的性能。你能够采用 ETCD 或者 Zookeeper 来实现多 KV,但这不是又回到了 CAP 原点了吗?

至于怎么选择,可根据实际业务场景和需求与架构进行讨论,选择一个适合的方案进行部署便可。

领略了 Mist 和 Medis 的风采后,相信你必定会有其余巧妙的想法,欢迎在评论区留言,咱们一块儿交流进步!

夜幕团队成立于 2019 年,团队包括崔庆才(静觅)、周子淇(Loco)、陈祥安(CXA)、唐轶飞(大鱼|BruceDone)、冯威(妄为)、蔡晋(悦来客栈的老板)、戴煌金(咸鱼)、张冶青(MarvinZ)、韦世东(Asyncins|奎因)和文安哲(sml2h3)。

涉猎的编程语言包括但不限于 Python、Rust、C++、Go,领域涵盖爬虫、深度学习、服务研发、逆向工程、软件安全等。团队非正亦非邪,只作认为对的事情,请你们当心。

相关文章
相关标签/搜索