1.1 loc[1]表示索引的是第1行(index 是整数)spa
import pandas as pd data = [[1,2,3],[4,5,6]] index = [0,1] columns=['a','b','c'] df = pd.DataFrame(data=data, index=index, columns=columns) df.loc[1] ''' a 4 b 5 c 6 ''' df a b c 0 1 2 3 1 4 5 6
1.2 loc[‘d’]表示索引的是第’d’行(index 是字符)code
data = [[1,2,3],[4,5,6]] index = ['d','e'] columns=['a','b','c'] df = pd.DataFrame(data=data, index=index, columns=columns) df.loc['d'] ''' a 1 b 2 c 3 ''' df a b c d 1 2 3 e 4 5 6
1.3 loc能够获取多行数据blog
data = [[1,2,3],[4,5,6]] index = ['d','e'] columns=['a','b','c'] df = pd.DataFrame(data=data, index=index, columns=columns) df.loc['d':] ''''' a b c d 1 2 3 e 4 5 6 '''
1.4 loc扩展——索引某行某列索引
import pandas as pd data = [[1,2,3],[4,5,6]] index = ['d','e'] columns=['a','b','c'] df = pd.DataFrame(data=data, index=index, columns=columns) df.loc['d',['b','c']] ''''' b 2 c 3 '''
1.5 loc扩展——索引某列pandas
import pandas as pd data = [[1,2,3],[4,5,6]] index = ['d','e'] columns=['a','b','c'] df = pd.DataFrame(data=data, index=index, columns=columns) df.loc[:,['c']] ''' c d 3 e 6 '''
固然获取某列数据最直接的方式是df.[列标签],可是当列标签未知时能够经过这种方式获取列数据。
须要注意的是,dataframe的索引[1:3]是包含1,2,3的。class
.iloc
则是基于序号的索引(仍是行优先),从0到length-1
。import
2.1 获取单行扩展
import pandas as pd data = [[1,2,3],[4,5,6]] index = ['d','e'] columns=['a','b','c'] df = pd.DataFrame(data=data, index=index, columns=columns) df.loc[1] ''' a 4 b 5 c 6 '''
2.2 索引多行im
import pandas as pd data = [[1,2,3],[4,5,6]] index = ['d','e'] columns=['a','b','c'] df = pd.DataFrame(data=data, index=index, columns=columns) df.iloc[0:] """ a b c d 1 2 3 e 4 5 6 """
2.3 索引列数据数据
import pandas as pd data = [[1,2,3],[4,5,6]] index = ['d','e'] columns=['a','b','c'] df = pd.DataFrame(data=data, index=index, columns=columns) df.iloc[:,[1]] ''''' b d 2 e 5 '''
.ix
则至关于上述两个之和,两种index都能处理。
3.1 经过行号索引
import pandas as pd data = [[1,2,3],[4,5,6]] index = ['d','e'] columns=['a','b','c'] df = pd.DataFrame(data=data, index=index, columns=columns) df.ix[1] ''''' a 4 b 5 c 6 '''
3.2 经过行标签索引
import pandas as pd data = [[1,2,3],[4,5,6]] index = ['d','e'] columns=['a','b','c'] df = pd.DataFrame(data=data, index=index, columns=columns) df.ix['e'] ''''' a 4 b 5 c 6 '''