接上文:java线程池的原理学习(二)java
ThreadPoolExecutor
类中将线程状态( runState
)分为了如下五种:segmentfault
RUNNING
:能够接受新任务而且处理进入队列中的任务SHUTDOWN
:不接受新任务,可是仍然执行队列中的任务STOP
:不接受新任务也不执行队列中的任务TIDYING
:全部任务停止,队列为空,进入该状态下的任务会执行terminated()
方法TERMINATED
:terminated()
方法执行完成后进入该状态缓存
RUNNING
-> SHUTDOWN
oop
调用了 shutdown()
方法,多是在 finalize()
方法中被隐式调用学习
(RUNNING or SHUTDOWN)
-> STOP
this
调用 shutdownNow()
线程
SHUTDOWN
-> TIDYING
code
当队列和线程池都为空时接口
STOP
-> TIDYING
队列
线程池为空时
TIDYING
-> TERMINATED
terminated()
方法执行完成
若是查看 ThreadPoolExecutor
的源码,会发现开头定义了这几个变量来表明线程状态和活动线程的数量:
//原子变量 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); private static final int COUNT_BITS = Integer.SIZE - 3; private static final int CAPACITY = (1 << COUNT_BITS) - 1; // runState is stored in the high-order bits private static final int RUNNING = -1 << COUNT_BITS; private static final int SHUTDOWN = 0 << COUNT_BITS; private static final int STOP = 1 << COUNT_BITS; private static final int TIDYING = 2 << COUNT_BITS; private static final int TERMINATED = 3 << COUNT_BITS;
这个类中将二进制数分为了两部分,高位表明线程池状态( runState
),低位表明活动线程数( workerCount
), CAPACITY
表明最大的活动线程数,为2^29-1,下面为了更直观的看到这些数我作了些打印:
public class Test1 { public static void main(String[] args) { final int COUNT_BITS = Integer.SIZE - 3; final int CAPACITY = (1 << COUNT_BITS) - 1; final int RUNNING = -1 << COUNT_BITS; final int SHUTDOWN = 0 << COUNT_BITS; final int STOP = 1 << COUNT_BITS; final int TIDYING = 2 << COUNT_BITS; final int TERMINATED = 3 << COUNT_BITS; System.out.println(Integer.toBinaryString(CAPACITY)); System.out.println(Integer.toBinaryString(RUNNING)); System.out.println(Integer.toBinaryString(SHUTDOWN)); System.out.println(Integer.toBinaryString(STOP)); System.out.println(Integer.toBinaryString(TIDYING)); System.out.println(Integer.toBinaryString(TERMINATED)); } }
输出:
11111111111111111111111111111 11100000000000000000000000000000 0 100000000000000000000000000000 1000000000000000000000000000000 1100000000000000000000000000000
打印的时候会将高位0省略
能够看到,第一行表明线程容量,后面5行提取高3位获得:
111 - RUNNING 000 - SHUTDOWN 001 - STOP 010 - TIDYING 011 - TERMINATED
分别对应5种状态,能够看到这样定义以后,只须要经过简单的移位操做就能够进行状态的转换。
execute
方法:
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); int c = ctl.get(); /**分三步执行 * 若是workerCount<corePoolSize,则建立一个新线程执行该任务 */ if (workerCountOf(c) < corePoolSize) { if (addWorker(command, true)) //建立成功则return return; c = ctl.get(); //建立失败从新读取状态,随时保持状态的最新 } /** * workerCount>=corePoolSize,判断线程池是否处于运行状态,再将任务加入队列 * */ if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); //用于double check //若是线程池处于非运行态,则将任务从缓存队列中删除 if (! isRunning(recheck) && remove(command)) reject(command); //拒绝任务 else if (workerCountOf(recheck) == 0) //若是活动线程数为0,则建立新线程 addWorker(null, false); } //若是线程池不处于RUNNING状态,或者workQueue满了,则执行如下代码 else if (!addWorker(command, false)) reject(command); }
能够看到,在类中使用了 Work
类来表明任务,下面是 Work
类的简单摘要:
private final class Worker extends AbstractQueuedSynchronizer implements Runnable { /** Thread this worker is running in. Null if factory fails. */ final Thread thread; /** Initial task to run. Possibly null. */ Runnable firstTask; /** Per-thread task counter */ volatile long completedTasks; /** * Creates with given first task and thread from ThreadFactory. * @param firstTask the first task (null if none) */ Worker(Runnable firstTask) { this.firstTask = firstTask; this.thread = getThreadFactory().newThread(this); } /** Delegates main run loop to outer runWorker */ public void run() { runWorker(this); } ...
Work
类实现了 Runnable
接口,使用了线程工厂建立线程,使用 runWork
方法来运行任务
建立新线程时用到了 addWorker()
方法:
/** * 检查在当前线程池状态和限制下可否建立一个新线程,若是能够,会相应改变workerCount, * 每一个worker都会运行他们的firstTask * @param firstTask 第一个任务 * @param core true使用corePoolSize做为边界,false使用maximumPoolSize * @return false 线程池关闭或者已经具有关闭的条件或者线程工厂没有建立新线程 */
private boolean addWorker(Runnable firstTask, boolean core) { retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // 只有当rs < SHUTDOWN才有可能接受新任务 if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; for (;;) { int wc = workerCountOf(c); //工做线程数量 if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) //不合法则返回 return false; if (compareAndIncrementWorkerCount(c)) //将工做线程数量+1 break retry; c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) //判断线程池状态有没有改变,改变了则进行外循环,不然只进行内循环 continue retry; // else CAS failed due to workerCount change; retry inner loop } } //建立新线程 Worker w = new Worker(firstTask); Thread t = w.thread; final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { //再次检查状态,防止ThreadFactory建立线程失败或者状态改变了 int c = ctl.get(); int rs = runStateOf(c); if (t == null || (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null))) { decrementWorkerCount(); //减小线程数量 tryTerminate();//尝试停止线程 return false; } workers.add(w);//添加到工做线程Set集合中 int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; } finally { mainLock.unlock(); } t.start();//执行任务 //状态变成了STOP(调用了shutdownNow方法) if (runStateOf(ctl.get()) == STOP && ! t.isInterrupted()) t.interrupt(); return true; }
再看 Work中
的 runWork
方法:
final void runWorker(Worker w) { Runnable task = w.firstTask; w.firstTask = null; boolean completedAbruptly = true;//线程是否异常停止 try { //先取firstTask,再从队列中取任务直到为null while (task != null || (task = getTask()) != null) { w.lock(); clearInterruptsForTaskRun(); try { beforeExecute(w.thread, task);//实现钩子方法 Throwable thrown = null; try { task.run();//运行任务 } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown);//实现钩子方法 } } finally { task = null; w.completedTasks++; w.unlock(); } } completedAbruptly = false;//成功运行,说明没有异常停止 } finally { processWorkerExit(w, completedAbruptly); } }