给两个相交的圆,第一个圆的圆心为\((x_1, \, y_1)\),半径为\(r_1\),第二个圆的圆心为\((x_2, \, y_2)\),半径为\(r_2\),求两个圆的交点。函数
《训练指南》上求两圆交点的模板用了atan2
,acos
等库函数,精度损失比较严重。
下面介绍一种精度损失较小的作法:
原文地址spa
首先回顾一下圆的两种表示方法:.net
将第一个圆的参数方程带入第二个圆的标准方程:
\((x_1+r_1cos\theta-x_2)^2+(y_1+r_1sin\theta-y_2)^2=r_2^2\)
展开后获得:
\(2r_1(x_1-x_2)cos\theta+2r_1(y_1-y_2)sin\theta=r_2^2-r_1^2-(x_1-x_2)^2-(y_1-y_2)^2\)
令:
\(a=2r_1(x_1-x_2)\)
\(b=2r_1(y_1-y_2)\)
\(c=r_2^2-r_1^2-(x_1-x_2)^2-(y_1-y_2)^2\)
原式变为:
\(a cos\theta+b sin\theta=c\)
令\(cos\theta=x, \, sin\theta=\sqrt{1-x^2}\),关于\(sin\theta\)的正负后面再判断。
代入方程,获得,\(ax+b\sqrt{1-x^2}=c\)
移项再两边平方,\((ax-c)^2=b^2(1-x^2)\)
整理得,\((a^2+b^2)x^2-2acx+c^2-b^2=0\)
下面就是解一元二次方程了。code
将\(sin\theta\)和\(cos\theta\)代回到第一个圆的参数方程,能获得交点的坐标。
若是该点不在第二个圆上,说明\(sin\theta\)是个负数,还须要对这个交点稍做调整。
还有一种特殊状况就是,若是已经肯定有两个不一样的交点,但解出来的\(cos\theta\)值只有一个。
说明对应的\(sin\theta\)值必然一正一负。blog
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <vector> typedef long double LD; const LD eps = 1e-10; int dcmp(LD x) { if(fabs(x) < eps) return 0; return x < 0 ? -1 : 1; } LD sqr(LD x) { return x * x; } struct Point { LD x, y; Point(LD x = 0, LD y = 0):x(x), y(y) {} void read() { cin >> x >> y; } }; Point operator - (const Point& A, const Point& B) { return Point(A.x - B.x, A.y - B.y); } bool operator == (const Point& A, const Point& B) { return dcmp(A.x - B.x) == 0 && dcmp(A.y - B.x) == 0; } LD Dot(const Point& A, const Point& B) { return A.x * B.x + A.y * B.y; } LD Length(const Point& A) { return sqrt(Dot(A, A)); } struct Circle { Point c; LD r; Circle() {} Circle(Point c, LD r):c(c), r(r) {} }; int getCircleIntersection(Circle C1, Circle C2) { LD &r1 = C1.r, &r2 = C2.r; LD &x1 = C1.c.x, &x2 = C2.c.x, &y1 = C1.c.y, &y2 = C2.c.y; LD d = Length(C1.c - C2.c); if(dcmp(fabs(r1-r2) - d) > 0) return -1; if(dcmp(r1 + r2 - d) < 0) return 0; LD d2 = Dot(C1.c - C2.c, C1.c - C2.c); LD a = r1*(x1-x2)*2, b = r1*(y1-y2)*2, c = r2*r2-r1*r1-d*d; LD p = a*a+b*b, q = -a*c*2, r = c*c-b*b; LD cosa, sina, cosb, sinb; //One Intersection if(dcmp(d - (r1 + r2)) == 0 || dcmp(d - fabs(r1 - r2)) == 0) { cosa = -q / p / 2; sina = sqrt(1 - sqr(cosa)); Point p(x1 + C1.r * cosa, y1 + C1.r * sina); if(!OnCircle(p, C2)) p.y = y1 - C1.r * sina; inter.push_back(p); return 1; } //Two Intersections LD delta = sqrt(q * q - p * r * 4); cosa = (delta - q) / p / 2; cosb = (-delta - q) / p / 2; sina = sqrt(1 - sqr(cosa)); sinb = sqrt(1 - sqr(cosb)); Point p1(x1 + C1.r * cosa, y1 + C1.r * sina); Point p2(x1 + C1.r * cosb, y1 + C1.r * sinb); if(!OnCircle(p1, C2)) p1.y = y1 - C1.r * sina; if(!OnCircle(p2, C2)) p2.y = y1 - C1.r * sinb; if(p1 == p2) p1.y = y1 - C1.r * sina; inter.push_back(p1); inter.push_back(p2); return 2; }