JavaShuo
栏目
标签
Label-dependent Feature Extraction in Social Networks for Node Classification
时间 2020-12-23
原文
原文链接
提出了一种基于社会网络特征提取的网络内分类方法。该方法提供了结合网络结构信息和分配给节点的类标签来计算的新特性。研究了不同特征对分类性能的影响。在真实数据上的实验表明,该方法生成的特征可以显著提高分类精度。 Introduction 有一些应用和研究方法,特别是与社交网络相关的应用和研究方法,能够产生相互连接的对象标签之间依赖的数据,称为关系自相关。根据这些连接,应该向分类过程中添加额外的输入
>>阅读原文<<
相关文章
1.
Pre-Training Graph Neural Networks for Generic Structural Feature Extraction
2.
ArnetMiner: Extraction and Mining of Academic Social Networks
3.
Learn How to Perform Feature Extraction from Graphs using DeepWalk
4.
Graph Neural Networks for Social Recommendation
5.
Graph based feature extraction and hybrid classification approach for facial expression recognition
6.
Recurrent Convolutional Neural Networks for Text Classification
7.
【Paper】TextCNN:Convolutional Neural Networks for Sentence Classification
8.
Very Deep Convolutional Networks for Text Classification
9.
《Character-level Convolutional Networks for Text Classification》
10.
Feature Selection for Classification: A Review(二)
更多相关文章...
•
Swift for-in 循环
-
Swift 教程
•
XML DOM - Node 对象
-
XML DOM 教程
•
Kotlin学习(一)基本语法
•
JDK13 GA发布:5大特性解读
相关标签/搜索
for...in
for..in
for.....in
networks
extraction
social
classification
feature
feature...setfeature
New Feature
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
css 让chrome支持小于12px的文字
2.
集合的一点小总结
3.
ejb
4.
Selenium WebDriver API
5.
人工智能基础,我的看法
6.
Non-local Neural及Self-attention
7.
Hbuilder 打开iOS真机调试操作
8.
improved open set domain adaptation with backpropagation 学习笔记
9.
Chrome插件 GitHub-Chart Commits3D直方图视图
10.
CISCO ASAv 9.15 - 体验思科上一代防火墙
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Pre-Training Graph Neural Networks for Generic Structural Feature Extraction
2.
ArnetMiner: Extraction and Mining of Academic Social Networks
3.
Learn How to Perform Feature Extraction from Graphs using DeepWalk
4.
Graph Neural Networks for Social Recommendation
5.
Graph based feature extraction and hybrid classification approach for facial expression recognition
6.
Recurrent Convolutional Neural Networks for Text Classification
7.
【Paper】TextCNN:Convolutional Neural Networks for Sentence Classification
8.
Very Deep Convolutional Networks for Text Classification
9.
《Character-level Convolutional Networks for Text Classification》
10.
Feature Selection for Classification: A Review(二)
>>更多相关文章<<