题库连接php
有 \(n\) 头牛,每头牛能够为 \(\text{A}\) 牛也能够为 \(\text{B}\) 牛。如今给这些牛排队,要求相邻两头 \(\text{A}\) 牛之间至少间隔 \(k\) 头 \(\text{B}\) 牛,求方案数,对大质数取模。c++
\(0\leq k<n\leq 100000\)spa
考虑枚举有几头 \(\text{A}\) 牛,设为 \(i\)。code
\(\text{B}\) 牛数为 \(n-i\) 。由垫球法以及隔板法,可知当前状况下方案为ip
\[{n-i-(i-1)\times k+i}\choose i\]get
#include <bits/stdc++.h> using namespace std; const int N = 200000+5, yzh = 5000011; int fac[N], ifac[N], n, k, ans = 1; int C(int n, int m) {return 1ll*fac[n]*ifac[m]%yzh*ifac[n-m]%yzh; } int main() { scanf("%d%d", &n, &k); fac[0] = fac[1] = ifac[0] = ifac[1] = 1; for (int i = 2; i <= (n<<1); i++) fac[i] = 1ll*i*fac[i-1]%yzh; for (int i = 2; i <= (n<<1); i++) ifac[i] = -1ll*yzh/i*ifac[yzh%i]%yzh; for (int i = 2; i <= (n<<1); i++) ifac[i] = 1ll*ifac[i]*ifac[i-1]%yzh; for (int i = 1; i <= n && n-i-(i-1)*k >= 0; i++) (ans += C(n-i-(i-1)*k+i, i)) %= yzh; printf("%d\n", (ans+yzh)%yzh); return 0; }