论文阅读笔记《Dynamic Few-Shot Visual Learning without Forgetting》

核心思想   本文提出一种不会遗忘的动态小样本学习算法,严格来讲应该也属于基于外部记忆的小样本学习算法。本文的主体结构依旧是特征提取+分类器的组合,但作者提出了两点改进。传统的分类器通常是计算类别权重向量与图像对应的特征向量之间的点乘积,作为相似性得分,并以此进行分类预测,本文采用余弦相似性度量函数取代点乘积计算方式。此外对于新的类别样本,本文并没有采用SGD的方法训练分类器得到对应的类别权重向量
相关文章
相关标签/搜索