【技术综述】深度学习在自然语言处理中的应用发展史

本篇介绍深度学习在自然语言处理(NLP)中的应用,从词向量开始,到最新最强大的BERT等预训练模型,梗概性的介绍了深度学习近20年在NLP中的一些重大的进展。 作者&编辑 | 小Dream哥  在深度学习之前,用于解决NLP问题的机器学习方法一般都基于浅层模型(如SVM和logistic 回归),这些模型都在非常高维和稀疏的特征(one-hot encoding)上进行训练和学习,出现了维度爆炸等
相关文章
相关标签/搜索