JavaShuo
栏目
标签
论文笔记系列-Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of...
时间 2020-12-27
原文
原文链接
I. 背景介绍 1. 学习曲线(Learning Curve) 我们都知道在手工调试模型的参数的时候,我们并不会每次都等到模型迭代完后再修改超参数,而是待模型训练了一定的epoch次数后,通过观察学习曲线(learning curve, lc) 来判断是否有必要继续训练下去。那什么是学习曲线呢?主要分为两类: 1.模型性能是训练时间或者迭代次数的函数:performance=f(time) 或 p
>>阅读原文<<
相关文章
1.
[Topic Discussion] Hyperparameter Optimization for Neural Networks
2.
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization
3.
COURSE 2 Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization
4.
课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第三周(Hype
5.
Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization--笔记(第一周)
6.
【论文阅读笔记】Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks
7.
论文笔记:Automatic generation of HCCA-resistant scalar multiplication algorithm by proper sequencing of
8.
[论文笔记] [2010] Understanding the Difficulty of Training Deep Feedforward Neural Networks
9.
[论文笔记]Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
10.
Exploring the teaching of deep learning in neural networks
更多相关文章...
•
XSLT
元素
-
XSLT 教程
•
XSLT
元素
-
XSLT 教程
•
Tomcat学习笔记(史上最全tomcat学习笔记)
•
Docker容器实战(七) - 容器眼光下的文件系统
相关标签/搜索
for...of
for..of
论文笔记
dp of dp
networks
hyperparameter
speeding
optimization
neural
automatic
MySQL教程
NoSQL教程
Spring教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
微软准备淘汰 SHA-1
2.
Windows Server 2019 Update 2010,20H2
3.
Jmeter+Selenium结合使用(完整篇)
4.
windows服务基础
5.
mysql 查看线程及kill线程
6.
DevExpresss LookUpEdit详解
7.
GitLab简单配置SSHKey与计算机建立连接
8.
桶排序(BucketSort)
9.
桶排序(BucketSort)
10.
C++ 桶排序(BucketSort)
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
[Topic Discussion] Hyperparameter Optimization for Neural Networks
2.
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization
3.
COURSE 2 Improving Deep Neural Networks Hyperparameter tuning, Regularization and Optimization
4.
课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第三周(Hype
5.
Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization--笔记(第一周)
6.
【论文阅读笔记】Ristretto: Hardware-Oriented Approximation of Convolutional Neural Networks
7.
论文笔记:Automatic generation of HCCA-resistant scalar multiplication algorithm by proper sequencing of
8.
[论文笔记] [2010] Understanding the Difficulty of Training Deep Feedforward Neural Networks
9.
[论文笔记]Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
10.
Exploring the teaching of deep learning in neural networks
>>更多相关文章<<