转 实例详解Django的 select_related 和 prefetch_related 函数对 QuerySet 查询的优化(三)

这是本系列的最后一篇,主要是select_related() 和 prefetch_related() 的最佳实践。python

第一篇在这里 讲例子和select_related()缓存

第二篇在这里 讲prefetch_related()函数

 

4. 一些实例fetch

选择哪一个函数
若是咱们想要得到全部家乡是湖北的人,最无脑的作法是先得到湖北省,再得到湖北的全部城市,最后得到故乡是这个城市的人。就像这样:.net

>>> hb = Province.objects.get(name__iexact=u"湖北省")
>>> people = []
>>> for city in hb.city_set.all():
... people.extend(city.birth.all())
...
显然这不是一个明智的选择,由于这样作会致使1+(湖北省城市数)次SQL查询。反正是个反例,致使的查询和得到掉结果就不列出来了。code

prefetch_related() 或许是一个好的解决方法,让咱们来看看。
>>> hb = Province.objects.prefetch_related("city_set__birth").objects.get(name__iexact=u"湖北省")
>>> people = []
>>> for city in hb.city_set.all():
... people.extend(city.birth.all())
...
由于是一个深度为2的prefetch,因此会致使3次SQL查询:
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`name` LIKE '湖北省' ;

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
WHERE `QSOptimize_city`.`province_id` IN (1);

SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`,
`QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
FROM `QSOptimize_person`
WHERE `QSOptimize_person`.`hometown_id` IN (1, 3);blog

嗯...看上去不错,可是3次查询么?倒过来查询可能会更简单?
>>> people = list(Person.objects.select_related("hometown__province").filter(hometown__province__name__iexact=u"湖北省"))
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`,
`QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`, `QSOptimize_city`.`id`,
`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_person`
INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`hometown_id` = `QSOptimize_city`.`id`)
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`)
WHERE `QSOptimize_province`.`name` LIKE '湖北省';
+----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+
| id | firstname | lastname | hometown_id | living_id | id | name | province_id | id | name |
+----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+
| 1 | 张 | 三 | 3 | 1 | 3 | 十堰市 | 1 | 1 | 湖北省 |
| 2 | 李 | 四 | 1 | 3 | 1 | 武汉市 | 1 | 1 | 湖北省 |
| 3 | 王 | 麻子 | 3 | 2 | 3 | 十堰市 | 1 | 1 | 湖北省 |
+----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+
3 rows in set (0.00 sec)
彻底没问题。不只SQL查询的数量减小了,python程序上也精简了。ci

select_related()的效率要高于prefetch_related()。所以,最好在能用select_related()的地方尽可能使用它,也就是说,对于ForeignKey字段,避免使用prefetch_related()。unicode

 

联用
对于同一个QuerySet,你能够同时使用这两个函数。
在咱们一直使用的例子上加一个model:Order (订单)
class Order(models.Model):
customer = models.ForeignKey(Person)
orderinfo = models.CharField(max_length=50)
time = models.DateTimeField(auto_now_add = True)
def __unicode__(self):
return self.orderinfo
若是咱们拿到了一个订单的id 咱们要知道这个订单的客户去过的省份。由于有ManyToManyField显然必需要用prefetch_related()。若是只用prefetch_related()会怎样呢?
>>> plist = Order.objects.prefetch_related('customer__visitation__province').get(id=1)
>>> for city in plist.customer.visitation.all():
... print city.province.name
...
显然,关系到了4个表:Order、Person、City、Province,根据prefetch_related()的特性就得有4次SQL查询
SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, `QSOptimize_order`.`time`
FROM `QSOptimize_order`
WHERE `QSOptimize_order`.`id` = 1 ;

SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
FROM `QSOptimize_person`
WHERE `QSOptimize_person`.`id` IN (1);

SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`,
`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
WHERE `QSOptimize_person_visitation`.`person_id` IN (1);

SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` IN (1, 2);
+----+-------------+---------------+---------------------+
| id | customer_id | orderinfo | time |
+----+-------------+---------------+---------------------+
| 1 | 1 | Info of Order | 2014-08-10 17:05:48 |
+----+-------------+---------------+---------------------+
1 row in set (0.00 sec)get

+----+-----------+----------+-------------+-----------+
| id | firstname | lastname | hometown_id | living_id |
+----+-----------+----------+-------------+-----------+
| 1 | 张 | 三 | 3 | 1 |
+----+-----------+----------+-------------+-----------+
1 row in set (0.00 sec)

+-----------------------+----+--------+-------------+
| _prefetch_related_val | id | name | province_id |
+-----------------------+----+--------+-------------+
| 1 | 1 | 武汉市 | 1 |
| 1 | 2 | 广州市 | 2 |
| 1 | 3 | 十堰市 | 1 |
+-----------------------+----+--------+-------------+
3 rows in set (0.00 sec)

+----+--------+
| id | name |
+----+--------+
| 1 | 湖北省 |
| 2 | 广东省 |
+----+--------+
2 rows in set (0.00 sec)


更好的办法是先调用一次select_related()再调用prefetch_related(),最后再select_related()后面的表
>>> plist = Order.objects.select_related('customer').prefetch_related('customer__visitation__province').get(id=1)
>>> for city in plist.customer.visitation.all():
... print city.province.name
...
这样只会有3次SQL查询,Django会先作select_related,以后prefetch_related的时候会利用以前缓存的数据,从而避免了1次额外的SQL查询:
SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, 
`QSOptimize_order`.`time`, `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, 
`QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` 
FROM `QSOptimize_order` 
INNER JOIN `QSOptimize_person` ON (`QSOptimize_order`.`customer_id` = `QSOptimize_person`.`id`) 
WHERE `QSOptimize_order`.`id` = 1 ;

SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, 
`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` 
FROM `QSOptimize_city` 
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) 
WHERE `QSOptimize_person_visitation`.`person_id` IN (1);

SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` 
FROM `QSOptimize_province` 
WHERE `QSOptimize_province`.`id` IN (1, 2);
+----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+
| id | customer_id | orderinfo | time | id | firstname | lastname | hometown_id | living_id |
+----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+
| 1 | 1 | Info of Order | 2014-08-10 17:05:48 | 1 | 张 | 三 | 3 | 1 |
+----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+
1 row in set (0.00 sec)

+-----------------------+----+--------+-------------+
| _prefetch_related_val | id | name   | province_id |
+-----------------------+----+--------+-------------+
|                     1 |  1 | 武汉市 |           1 |
|                     1 |  2 | 广州市 |           2 |
|                     1 |  3 | 十堰市 |           1 |
+-----------------------+----+--------+-------------+
3 rows in set (0.00 sec)

+----+--------+
| id | name |
+----+--------+
| 1 | 湖北省 |
| 2 | 广东省 |
+----+--------+
2 rows in set (0.00 sec)

 

值得注意的是,能够在调用prefetch_related以前调用select_related,而且Django会按照你想的去作:先select_related,而后利用缓存到的数据prefetch_related。然而一旦prefetch_related已经调用,select_related将不起做用。

 

小结
由于select_related()老是在单次SQL查询中解决问题,而prefetch_related()会对每一个相关表进行SQL查询,所以select_related()的效率一般比后者高。
鉴于第一条,尽量的用select_related()解决问题。只有在select_related()不能解决问题的时候再去想prefetch_related()。
你能够在一个QuerySet中同时使用select_related()和prefetch_related(),从而减小SQL查询的次数。
只有prefetch_related()以前的select_related()是有效的,以后的将会被无视掉。

 

关于这两个函数,我能想到的东西目前只有这么多。不过基于一些我的缘由,写第三篇时间比较短,写的有些仓促。若是何时又想起了什么,我会在这篇博文中添加。--------------------- 做者:CuGBabyBeaR 来源:CSDN 原文:https://blog.csdn.net/cugbabybear/article/details/38460877 版权声明:本文为博主原创文章,转载请附上博文连接!

相关文章
相关标签/搜索