原题地址:https://leetcode.com/problems...面试
Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring. For "(()", the longest valid parentheses substring is "()", which has length = 2. Another example is ")()())", where the longest valid parentheses substring is "()()", which has length = 4.
一个括号序列,求出其中成对括号的最大长度segmentfault
这题能够参考个人另外一篇博客,这篇博客讲解了如何用堆栈判断括号序列是否能够成对。咱们能够将堆栈的思路延续到这里。每当遇到一个左括号或者是没法成对的右括号,就将它压入栈中,能够成对的括号则从栈中压出。这样栈中剩下的就是没法成对的括号的下标。这时咱们能够判断这些下标间的距离来得到最大的成对括号长度。在这里须要先遍历一遍字符串,再遍历一下非空的堆栈。数组
public int longestValidParentheses(String s) { Stack<Parenthese> parenthesesStack = new Stack<Parenthese>(); for(int i = 0 ; i < s.length() ; i++){ char symbol = s.charAt(i); if(symbol==')'){ //在这里左右括号能够成对,则出栈 if(!parenthesesStack.isEmpty() && parenthesesStack.peek().symbol=='('){ parenthesesStack.pop(); continue; } } //其余状况都压入栈中 parenthesesStack.push(new Parenthese(symbol, i)); } int maxLength = 0; int nextIndex = s.length(); while(!parenthesesStack.isEmpty()){ int curIndex = parenthesesStack.pop().index; maxLength = (nextIndex-curIndex-1)>maxLength ? nextIndex-curIndex-1 : maxLength; nextIndex = curIndex; } return Math.max(nextIndex, maxLength); } public class Parenthese{ char symbol; int index; public Parenthese(char symbol, int index){ this.symbol = symbol; this.index = index; } }
在这里能够优化,由于使用数据结构不是必要的。咱们能够直接压入栈中下标,再从字符串中得到该下标对应的字符微信
public int longestValidParentheses_noDataStructure(String s) { Stack<Integer> parenthesesStack = new Stack<Integer>(); for(int i = 0 ; i < s.length() ; i++){ if(s.charAt(i)==')'){ if(!parenthesesStack.isEmpty() && s.charAt(parenthesesStack.peek())=='('){ parenthesesStack.pop(); continue; } } parenthesesStack.push(i); } int maxLength = 0; int nextIndex = s.length(); while(!parenthesesStack.isEmpty()){ int curIndex = parenthesesStack.pop(); int curLength = nextIndex-curIndex-1; maxLength = curLength>maxLength ? curLength : maxLength; nextIndex = curIndex; } return Math.max(nextIndex, maxLength); }
dynamic programming 的真 奥义其实在于假设已知以前全部的结果,结合以前的结果穷尽每一种当前值可能的状况
在这道题目中,咱们假设已经知道长度为n-1字符串中,到每个下标为止的的最大的括号组长度,这些值被存储在和字符串长度等长的int数组s中,其中s的下标表明字符串的下标,s的值表明到这个字符串下标为止最长括号组长度。
那么当前第n个符号主要有如下三种状况:数据结构
代码实现以下优化
public int longestValidParentheses_dynamicProgramming(String s) { int[] maxCount = new int[s.length()]; int maxLength = 0; for(int i = 1 ; i<s.length() ; i++){ if(s.charAt(i) == ')'){ if(s.charAt(i-1)=='('){ maxCount[i] = (i>=2? maxCount[i-2]+2 : 2); maxLength = Math.max(maxCount[i], maxLength); }else{ if(i-maxCount[i-1]-1>=0 && s.charAt(i-maxCount[i-1]-1)=='('){ maxCount[i] = maxCount[i-1]+2 + ((i-maxCount[i-1]-2 >= 0)?maxCount[i-maxCount[i-1]-2]:0);; maxLength = Math.max(maxCount[i], maxLength); } } } } return maxLength; }
简化后的代码以下:this
public int longestValidParentheses_dynamicProgrammingConcise(String s) { int[] maxCount = new int[s.length()]; int maxLength = 0; for(int i = 1 ; i<s.length() ; i++){ if(s.charAt(i) == ')' && i-maxCount[i-1]-1>=0 && s.charAt(i-maxCount[i-1]-1)=='('){ maxCount[i] = maxCount[i-1] + 2 + ((i-maxCount[i-1]-2>=0) ? maxCount[i-maxCount[i-1]-2] : 0); maxLength = Math.max(maxCount[i], maxLength); } } return maxLength; }
想要了解更多开发技术,面试教程以及互联网公司内推,欢迎关注个人微信公众号!将会不按期的发放福利哦~spa