你们通常都是用Grafana自定义Dashboard来监控Prometheus数据的,做者此次尝试用ECharts来绘制Prometheus数据图表,一方面能够减小依赖,另外一方面能够将监控界面灵活的集成进应用系统。至于如何在被监测机器上安装NodeExporter以及如何部署Prometheus做者就不描述了,园子里有不少文章介绍。javascript
Prometheus提供了Http Api来执行promql查询,但须要将返回的数据格式转换为ECharts的格式,好在EChars的xAxis.type能够设置为'time'类型,与Prometheus返回的格式接近。做者写了个简单的服务来执行查询及转换数据,详见如下代码:html
public class MetricService { private static readonly HttpClient http = new HttpClient() { //请修改指向Prometheus地址 BaseAddress = new Uri("http://10.211.55.2:9090/api/v1/"), Timeout = TimeSpan.FromSeconds(2) }; public async Task<object> GetCpuUsages(string node, DateTime start, DateTime end) { var promql = $"100-irate(node_cpu{{instance='{node}:9100',mode='idle'}}[5m])*100"; return await QueryRange(promql, start, end, 20, 2); } public async Task<object> GetMemUsages(string node, DateTime start, DateTime end) { var promql = $"(1-(node_memory_MemAvailable{{instance='{node}:9100'}}/(node_memory_MemTotal{{instance='{node}:9100'}})))*100"; return await QueryRange(promql, start, end, 20, 2); } public async Task<object> GetNetTraffic(string node, DateTime start, DateTime end) { var downql = $"irate(node_network_receive_bytes{{instance='{node}:9100',device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}}[5m])"; var ls = await QueryRange(downql, start, end, 15/*4*/, 0); var upql = $"irate(node_network_transmit_bytes{{instance='{node}:9100',device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}}[5m])"; ls.Add(await QueryRange(upql, start, end, 15/*4*/, 0)); return ls; } public async Task<object> GetDiskIO(string node, DateTime start, DateTime end) { var readql = $"irate(node_disk_bytes_read{{instance='{node}:9100'}}[1m])"; var ls = await QueryRange(readql, start, end, 15/*10*/, 0); var writeql = $"irate(node_disk_bytes_written{{instance='{node}:9100'}}[1m])"; ls.Add(await QueryRange(writeql, start, end, 15/*10*/, 0)); return ls; } #region ====Parse PromQL==== private static async Task<List<object>> QueryRange(string promql, DateTime start, DateTime end, int step, int round) { if (start >= end) throw new ArgumentOutOfRangeException(); var ts1 = (int)(start.ToUniversalTime() - DateTime.UnixEpoch).TotalSeconds; var ts2 = (int)(end.ToUniversalTime() - DateTime.UnixEpoch).TotalSeconds; var res = await http.GetAsync($"query_range?query={promql}&start={ts1}&end={ts2}&step={step}s"); var stream = await res.Content.ReadAsStreamAsync(); using (var sr = new System.IO.StreamReader(stream)) using (var jr = new JsonTextReader(sr)) { return ParseToSeries(jr, round); } } private static List<object> ParseToSeries(JsonTextReader jr, int round) { if (!jr.Read() || jr.TokenType != JsonToken.StartObject) throw new Exception(); if (!jr.Read() || jr.TokenType != JsonToken.PropertyName || (string)jr.Value != "status") throw new Exception(); var status = jr.ReadAsString(); if (status != "success") throw new Exception(); if (!jr.Read() || jr.TokenType != JsonToken.PropertyName || (string)jr.Value != "data") throw new Exception(); if (!jr.Read() || jr.TokenType != JsonToken.StartObject) throw new Exception(); if (!jr.Read() || jr.TokenType != JsonToken.PropertyName || (string)jr.Value != "resultType") throw new Exception(); var resultType = jr.ReadAsString(); if (!jr.Read() || jr.TokenType != JsonToken.PropertyName || (string)jr.Value != "result") throw new Exception(); return ReadResultArray(jr, round); //No need read others } private static List<object> ReadResultArray(JsonTextReader jr, int round) { if (!jr.Read() || jr.TokenType != JsonToken.StartArray) throw new Exception(); var ls = new List<object>(); do { if (!jr.Read()) throw new Exception(); if (jr.TokenType == JsonToken.EndArray) break; if (jr.TokenType != JsonToken.StartObject) throw new Exception(); ls.Add(ReadResultItem(jr, round)); } while (true); return ls; } private static List<double[]> ReadResultItem(JsonTextReader jr, int round) { //已读取StartObject标记 if (!jr.Read() || jr.TokenType != JsonToken.PropertyName || (string)jr.Value != "metric") throw new Exception(); ReadMetric(jr); if (!jr.Read() || jr.TokenType != JsonToken.PropertyName || (string)jr.Value != "values") throw new Exception(); var values = ReadValues(jr, round); if (!jr.Read() || jr.TokenType != JsonToken.EndObject) throw new Exception(); return values; } private static void ReadMetric(JsonTextReader jr) { if (!jr.Read() || jr.TokenType != JsonToken.StartObject) throw new Exception(); do { //PropertyName or EndObject if (!jr.Read()) throw new Exception(); if (jr.TokenType == JsonToken.EndObject) return; //PropertyValue jr.Read(); } while (true); } private static List<double[]> ReadValues(JsonTextReader jr, int round) { if (!jr.Read() || jr.TokenType != JsonToken.StartArray) throw new Exception(); var ls = new List<double[]>(); do { if (!jr.Read()) throw new Exception(); if (jr.TokenType == JsonToken.EndArray) break; if (jr.TokenType != JsonToken.StartArray) throw new Exception(); var ts = jr.ReadAsDouble().Value * 1000; //PromQL时间*1000 var value = Math.Round(double.Parse(jr.ReadAsString()), round, MidpointRounding.ToEven); //PromQL值为字符串 ls.Add(new double[] { ts, value }); if (!jr.Read() || jr.TokenType != JsonToken.EndArray) throw new Exception(); } while (true); return ls; } #endregion }
Tip: promql的写法可参考grafana网站相关Dashboard。java
做者使用Vue-ECharts做为ECharts的包装,以CPU使用率Vue组件为例:node
<v-chart theme="dark" autoresize :options="chartOptions" style="height:250px"> </v-chart>
@Component export default class CpuUsages extends Vue { /** 目标实例IP */ @Prop({ type: String, default: '10.211.55.3' }) node /** 开始时间 */ @Prop({ type: Date, default: () => { var now = new Date(); return new Date(now.getFullYear(), now.getMonth(), now.getDate()) } }) start /** 结束时间 */ @Prop({ type: Date, default: () => { return new Date() } }) end chartOptions = { title: { text: 'Cpu Usages', x: 'center' }, tooltip: { trigger: 'axis' }, xAxis: { type: 'time' }, yAxis: { min: 0, max: 100 }, series: [] } refresh() { sys.Services.MetricService.GetCpuUsages(this.node, this.start, this.end).then(res => { this.chartOptions.series.splice(0) for (var i = 0; i < res.length; ++i) { var seria = { type: 'line', name: 'cpu' + i, data: res[i], showSymbol: false } this.chartOptions.series.push(seria) } }).catch(err => { this.$message(err) }) } mounted() { this.refresh() } }
根据须要能够灵活组合多个指标组件,造成相应的Dashboard界面(以下图所示)。 docker
感谢Vue、ECharts、Vue-ECharts、Prometheus等项目,使得开发并集成监控Dashboard如此简单。另码文不易,码技术文更不易,因此请您多多推荐!api
原文出处:https://www.cnblogs.com/BaiCai/p/11269020.htmlasync