两种正则化的区别

部分转自:https://vimsky.com/article/969.html 使用机器学习方法解决实际问题时,我们通常要用L1或L2范数做正则化(regularization),从而限制权值大小,减少过拟合风险。特别是在使用梯度下降来做目标函数优化时,很常见的说法是, L1正则化产生稀疏的权值, L2正则化产生平滑的权值。为什么会这样?这里面的本质原因是什么呢?下面我们从两个角度来解释这个问题
相关文章
相关标签/搜索