连接:https://www.nowcoder.com/acm/contest/145/J
来源:牛客网
ios
时间限制:C/C++ 1秒,其余语言2秒
空间限制:C/C++ 32768K,其余语言65536K
Special Judge, 64bit IO Format: %lld优化
You have a n * m grid of characters, where each character is an English letter (lowercase or uppercase, which means there are a total of 52 different possible letters).
A nonempty subrectangle of the grid is called sudoku-like if for any row or column in the subrectangle, all the cells in it have distinct characters.
How many sudoku-like subrectangles of the grid are there?spa
The first line of input contains two space-separated integers n, m (1 ≤ n, m ≤ 1000). The next n lines contain m characters each, denoting the characters of the grid. Each character is an English letter (which can be either uppercase or lowercase).
Output a single integer, the number of sudoku-like subrectangles.
示例1code
复制orm
2 3 AaA caa
复制ci
11
For simplicity, denote the j-th character on the i-th row as (i, j). For sample 1, there are 11 sudoku-like subrectangles. Denote a subrectangle by (x1, y1, x2, y2), where (x1, y1) and (x2, y2) are the upper-left and lower-right coordinates of the subrectangle. The sudoku-like subrectangles are (1, 1, 1, 1), (1, 2, 1, 2), (1, 3, 1, 3), (2, 1, 2, 1), (2, 2, 2, 2), (2, 3, 2, 3), (1, 1, 1, 2), (1, 2, 1, 3), (2, 1, 2, 2), (1, 1, 2, 1), (1, 3, 2, 3).
示例2get
复制input
4 5 abcde fGhij klmno pqrst
复制string
150
For sample 2, the grid has 150 nonempty subrectangles, and all of them are sudoku-like.
数据量不是很大 能够枚举it
可是纯暴力的枚举可能会T 由于是52*52*n*m
感受仍是挺考验思惟的...反正我不是很会敲...看了题解以为好巧妙
能够优化到52*n*m
首先预处理出每一个位置距离上一个相同字母的距离 dp
而后枚举每个点 每次往左走一格看看能多多少个长方形【与高度有关】,这个高度是不可能变大的
#include<iostream> #include<stdio.h> #include<string.h> #include<algorithm> #include<stack> #include<queue> #include<map> #include<set> #define inf 0x3f3f3f3f using namespace std; int n, m; const int maxn = 1005; char grid[maxn][maxn]; int pos[maxn], L[maxn][maxn], U[maxn][maxn], len[maxn]; //pos 上一次该字母出现的位子 LU分别表示距离相同字母最近的距离 int main() { while(scanf("%d%d", &n, &m) != EOF){ for(int i = 1; i <= n; i++){ scanf("%s", grid[i] + 1); } for(int i = 1; i <= n; i++){ memset(pos, 0, sizeof(pos)); for(int j = 1; j <= m; j++){ L[i][j] = min(L[i][j - 1] + 1, j - pos[grid[i][j]]); pos[grid[i][j]] = j; } } for(int j = 1; j <= m; j++){ memset(pos, 0, sizeof(pos)); for(int i = 1; i <= n; i++){ U[i][j] = min(U[i - 1][j] + 1, i - pos[grid[i][j]]); pos[grid[i][j]] = i; } } long long ans = 0; for(int j = 1; j <= m; j++){ memset(len, 0, sizeof(len)); for(int i = 1; i <= n; i++){ for(int k = 0; k < L[i][j]; k++){ len[k] = min(len[k] + 1, U[i][j - k]); if(k) len[k] = min(len[k], len[k - 1]); ans += len[k]; } for(int k = L[i][j]; k < 54; k++) len[k] = 0; } } printf("%lld\n", ans); } return 0; } for(int j = 1; j <= m; j++){ memset(pos, 0, sizeof(pos)); for(int i = 1; i <= n; i++){ U[i][j] = min(U[i - 1][j] + 1, i - pos[grid[i][j]]); pos[grid[i][j]] = i; } } long long ans = 0; for(int j = 1; j <= m; j++){ memset(len, 0, sizeof(len));//len表示当前列能够向上的长度 for(int i = 1; i <= n; i++){ for(int k = 0; k < L[i][j]; k++){ len[k] = min(len[k] + 1, U[i][j - k]); if(k) len[k] = min(len[k], len[k - 1]); ans += len[k]; } for(int k = L[i][j]; k < 54; k++) len[k] = 0; } } printf("%lld\n", ans); } return 0; }