colorgrad.m算法
%梯度边缘提取算法 function [VG, A, PPG] = colorgrad(f, T) if (ndims(f)~=3) || (size(f,3)~=3) %ndims是matlab中求一个数组维数的函数,size(f,3)返回f的行数 error('Input image must be RGB'); end sh = fspecial('sobel'); %sobel用于边缘提取 sv = sh'; %转置 Rx = imfilter(double(f(:,:,1)), sh, 'replicate');%线性空间滤波函数;replicate表示图像大小经过复制外边界的值来扩展, Ry = imfilter(double(f(:,:,1)), sv, 'replicate');%symmetric表示图像大小经过沿自身的边界进行滤镜 Gx = imfilter(double(f(:,:,2)), sh, 'replicate');%circular表示经过将图像做为二位周期函数的一个周期来扩展 Gy = imfilter(double(f(:,:,2)), sv, 'replicate'); Bx = imfilter(double(f(:,:,3)), sh, 'replicate'); By = imfilter(double(f(:,:,3)), sv, 'replicate'); gxx = Rx.^2 + Gx.^2 + Bx.^2; gyy = Ry.^2 + Gy.^2 + By.^2; gxy = Rx.*Ry + Gx.*Gy + Bx.*By; A = 0.5*(atan(2*gxy./(gxx-gyy+eps))); %%atan计算反正切函数 ||||| %%./点除 ||||| 若是a、b是矩阵,a./b就是a、b中对应的每一个元素相除,获得一个新的矩阵;若是a、b是两个数,那么a./b就是普通的除法 %%eps是一个函数,能够返回某一个数N的最小浮点数精度||||| G1 = 0.5*((gxx+gyy) + (gxx-gyy).*cos(2*A) + 2*gxy.*sin(2*A)); % A = A + pi/2; G2 = 0.5*((gxx+gyy) + (gxx-gyy).*cos(2*A) + 2*gxy.*sin(2*A)); G1 = G1.^0.5; G2 = G2.^0.5; VG = mat2gray(max(G1, G2)); %mat2gray实现图像矩阵的归一化操做 RG = sqrt(Rx.^2 + Ry.^2); GG = sqrt(Gx.^2 + Gy.^2); BG = sqrt(Bx.^2 + By.^2); PPG = mat2gray(RG + GG + BG); if nargin ==2 %是用来判断输入变量个数的函数 VG = (VG>T).*VG; PPG = (PPG>T).*PPG; end
demo.m数组
close all;clear all;clc; f = imread('wo.jpg'); [VG,A,PPG] = colorgrad(f); ppg = im2uint8(PPG); %把图像数据类型转换为无符号八位整型 ppgf = 255 - ppg; [M,N] = size(ppgf); T=150; ppgf1 = zeros(M,N); for ii = 1:M for jj = 1:N if ppgf(ii,jj)<T %边缘区域 % ppgf1(ii,jj)=0; ppgf1(ii,jj)=(T-ppgf1(ii,jj))/5; else %平滑区域 ppgf1(ii,jj)=235/(255-T)*(ppgf(ii,jj)-T); end end end ppgf1 = uint8(ppgf1); figure; subplot(221);imshow(ppgf); subplot(222);imshow(ppgf1); subplot(223);imhist(ppgf); subplot(224);imhist(ppgf1); figure;imshow(ppgf1);
实验原图:函数
实验效果:ui