1、ExpirationTime的做用
在React
中,为防止某个update
由于优先级的缘由一直被打断而未能执行。React
会设置一个ExpirationTime
,当时间到了ExpirationTime
的时候,若是某个update
还未执行的话,React
将会强制执行该update
,这就是ExpirationTime
的做用。react
2、位置
在React源码解析之ReactDOM.render()中,已经讲解了updateContainer()
:git
export function updateContainer( element: ReactNodeList, container: OpaqueRoot, parentComponent: ?React$Component<any, any>, callback: ?Function, ): ExpirationTime { ... //计算过时时间,这是React优先级更新很是重要的点 const expirationTime = computeExpirationForFiber( currentTime, current, suspenseConfig, ); ... }
computeExpirationForFiber
:github
//为fiber对象计算expirationTime export function computeExpirationForFiber( currentTime: ExpirationTime, fiber: Fiber, suspenseConfig: null | SuspenseConfig, ): ExpirationTime { ... // Compute an expiration time based on the Scheduler priority. switch (priorityLevel) { case ImmediatePriority: expirationTime = Sync; break; case UserBlockingPriority: // TODO: Rename this to computeUserBlockingExpiration //一个是计算交互事件(如点击)的过时时间 expirationTime = computeInteractiveExpiration(currentTime); break; case NormalPriority: case LowPriority: // TODO: Handle LowPriority // TODO: Rename this to... something better. //一个是计算异步更新的过时时间 expirationTime = computeAsyncExpiration(currentTime); break; case IdlePriority: expirationTime = Never; break; default: invariant(false, 'Expected a valid priority level'); } ... }
咱们能够看到有两个计算expirationTime
的方法,分别为computeInteractiveExpiration()
和computeAsyncExpiration()
异步
先看下computeAsyncExpiration()
性能
3、computeAsyncExpiration()
做用:
返回低优先级(普通异步更新)的expirationTime
(过时时间)this
源码:spa
//低权限的过时时间 export const LOW_PRIORITY_EXPIRATION = 5000; export const LOW_PRIORITY_BATCH_SIZE = 250; //普通的异步的expirationTime export function computeAsyncExpiration( currentTime: ExpirationTime, ): ExpirationTime { return computeExpirationBucket( currentTime, //5000 LOW_PRIORITY_EXPIRATION, //250 LOW_PRIORITY_BATCH_SIZE, ); }
解析:currentTime
先按下不表,LOW_PRIORITY_EXPIRATION
即5000
,LOW_PRIORITY_BATCH_SIZE
即250
,注意它的名字LOW_PRIORITY_BATCH_SIZE
,下面会提到code
4、computeExpirationBucket()
做用:
计算过时时间orm
源码:对象
//1073741823 export const Sync = MAX_SIGNED_31_BIT_INT; //1073741822 export const Batched = Sync - 1; const UNIT_SIZE = 10; //1073741821 const MAGIC_NUMBER_OFFSET = Batched - 1; function ceiling(num: number, precision: number): number { return (((num / precision) | 0) + 1) * precision; } //计算过时时间 function computeExpirationBucket( currentTime, expirationInMs, bucketSizeMs, ): ExpirationTime { return ( //1073741821 MAGIC_NUMBER_OFFSET - ceiling( // 1073741821-currentTime+(high 150 或者 low 5000 /10) , MAGIC_NUMBER_OFFSET - currentTime + expirationInMs / UNIT_SIZE, //(high 100 或者 low 250 /10 ) bucketSizeMs / UNIT_SIZE, ) ); }
解析:
(1)MAX_SIGNED_31_BIT_INT
// Max 31 bit integer. The max integer size in V8 for 32-bit systems. // Math.pow(2, 30) - 1 // 0b111111111111111111111111111111 //整型最大数值,是V8中针对32位系统所设置的最大值 export default 1073741823;
(2)| 0
的意思是取整
console.log(16/3 |0) //5
(3)根据computeExpirationBucket()
里面的公式,计算下异步更新的过时时间:
//low 状况 1073741821-ceiling(1073741821-currentTime+500,25) 1073741821-((((1073741821-currentTime+500) / 25) | 0) + 1) * 25 1073741821-((1073741821/25-currentTime/25+20 | 0) + 1) * 25 1073741821-((1073741821/25-currentTime/25+20*25/25 | 0) + 1) * 25 1073741821-((1073741821-currentTime+500)/25 | 0)*25 - 25 1073741796-((1073741821-currentTime+500)/25 | 0)*25 1073741796-((1073742321-currentTime)/25 | 0)*25 //======咱们直接取最后四位来探索规律=================== 1796-((2321-currentTime)/25 | 0)*25 //假设 currentTime 是 2000 1796-(2321- 2000 /25 | 0)*25 //1796-300 //currentTime是2010 1796-(311/25 | 0)*25 //1796-300 //currentTime是2024 1796-(311/25 | 0)*25 //1796-275 //currentTime是2025 1796-(311/25 | 0)*25 //1796-275
能够看到,低优先的过时时间间隔是25ms
同理,高优先级的过时时间间隔是10ms
//high 状况 1073741821-ceiling(1073741821-currentTime+15,10)
**也就是说,React
低优先级update
的expirationTime
间隔是25ms
,React
让两个相近(25ms
内)的update
获得相同的expirationTime
,目的就是让这两个update
自动合并成一个Update
,从而达到批量更新的目的,就像LOW_PRIORITY_BATCH_SIZE
的名字同样,自动合并批量更新。**
想象一下,开发者不停地使用setState()
更新ReactApp
,若是不把相近的update
合并的话,会严重影响性能,就像提到的doubleBuffer
同样,React
为提升性能,考虑得很是全面!
(完)