【原创】大数据基础之ElasticSearch(2)经常使用API整理

Fortunately, Elasticsearch provides a very comprehensive and powerful REST API that you can use to interact with your cluster. Among the few things that can be done with the API are as follows:html

  • Check your cluster, node, and index health, status, and statistics
  • Administer your cluster, node, and index data and metadata
  • Perform CRUD (Create, Read, Update, and Delete) and search operations against your indexes
  • Execute advanced search operations such as paging, sorting, filtering, scripting, aggregations, and many others

es提供了一套容易理解而且强大的rest api接口,经过该接口你能够和集群进行交互,完成各类操做:检查集群状态、管理集群、对索引作CRUD操做、查询索引;node

 

Rest API Pattern:git

<REST Verb> /<Index>/<Type>/<ID>[?pretty|v]github

ps:Type至关于Category或者Partition的概念;Type将来会被废弃掉;sql

The pretty parameter, again, just tells Elasticsearch to return pretty-printed JSON results.json

全部返回json接口均可以增长pretty参数,这样返回的json是格式化的;api

Each of the commands accepts a query string parameter v to turn on verbose output.app

v参数意味着详细输出;curl

 

如下经过CURL请求,关于CURL详见:http://www.javashuo.com/article/p-yvkadpki-cy.htmlelasticsearch

一  集群相关

1 查看健康状况

# curl http://$es_server:9200/_cat/health?v
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1547990539 21:22:19 elasticsearch green 3 3 10 5 0 0 0 0 - 100.0%

2 查看节点

# curl http://$es_server:9200/_cat/nodes?v
ip heap.percent ram.percent cpu load_1m load_5m load_15m node.role master name
server1 29 74 1 0.07 0.10 0.13 mdi * 3iLMMxu
server2 45 74 1 0.11 0.11 0.13 mdi - vz1k1MB
server3 47 75 1 0.08 0.07 0.08 mdi - vGUu-b6

3 查看master

# curl 'http://$es_server:9200/_cat/master?v'
id host ip node
3iLMMxuCTISHPJaVo6I4SA server1 server1 3iLMMxu

4 查看全部索引

# curl http://$es_server:9200/_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
green open testdoc GFZhtn6GSMy2pPPj8UK70Q 5 1 1 0 8.9kb 4.4kb

5 查看节点状态

# curl -XGET 'http://localhost:9200/_nodes/stats?pretty'

二 索引相关

1 创建新索引

# curl -XPUT 'http://$es_server:9200/testdoc/'
{"acknowledged":true,"shards_acknowledged":true,"index":"testdoc"}

2 删除索引

# curl -XDELETE 'http://$es_server:9200/testdoc/'

3 查看shards

# curl http://localhost:9200/_cat/shards

三 文档相关

1 插入单个文档

# curl -XPUT 'http://localhost:9200/testdoc/testtype/1' -d '{"name":"test"}'
{"_index":"testdoc","_type":"testtype","_id":"1","_version":1,"result":"created","_shards":{"total":2,"successful":2,"failed":0},"_seq_no":0,"_primary_term":1}

若是报错:

{"error":"Incorrect HTTP method for uri [/testdoc/testtype] and method [PUT], allowed: [POST]","status":405}

添加header

-H 'Content-Type: application/json'

2 查询单个文档

# curl -XGET 'http://$es_server:9200/testdoc/testtype/1'
{"_index":"testdoc","_type":"testtype","_id":"1","_version":1,"found":true,"_source":{"name":"test"}}

3 修改单个文档

1)使用相同的id和不一样的数据再调用一次

# curl -XPUT 'http://$es_server:9200/testdoc/testtype/1' -d '{"name":"test hello"}'
{"_index":"testdoc","_type":"testtype","_id":"1","_version":2,"result":"updated","_shards":{"total":2,"successful":2,"failed":0},"_seq_no":1,"_primary_term":2}

2)经过update

# curl -XPOST 'http://$es_server:9200/testdoc/testtype/1/_update' -d '{"doc":{"name":"test hello again"}}'
{"_index":"testdoc","_type":"testtype","_id":"1","_version":3,"result":"updated","_shards":{"total":2,"successful":2,"failed":0},"_seq_no":2,"_primary_term":2}

4 删除单个文档

# curl -XDELETE 'http://$es_server:9200/testdoc/testtype/1'

5 批量文档操做接口

同时进行两个插入一个修改一个删除

# curl -XPOST 'http://$es_server:9200/testdoc/testtype/1/_bulk' -d '
{"index":{"_id":"3"}}
{"name": "John Doe" }
{"index":{"_id":"4"}}
{"name": "Jane Doe" }
{"update":{"_id":"1"}}
{"doc": { "name": "John Doe becomes Jane Doe" } }
{"delete":{"_id":"2"}}'

6 查询全部文档

如下两种请求等价

# curl -XGET 'http://$es_server:9200/testdoc/_search?q=*'
{"took":2,"timed_out":false,"_shards":{"total":5,"successful":5,"skipped":0,"failed":0},"hits":{"total":1,"max_score":1.0,"hits":[{"_index":"testdoc","_type":"testtype","_id":"1","_score":1.0,"_source":{"name":"test hello again"}}]}}

# curl -XPOST 'http://$es_server:9200/testdoc/_search' -d '{"query":{"match_all":{}}}'

7 查询count总数

# curl http://localhost:9200/testdoc/_count

8 经过条件查询count

# curl http://localhost:9200/testdoc/_count?q=name:hello

# curl http://localhost:9200/testdoc/_count?q=name:hello%20AND%20age:10

注意url传递query时若是有多个field,须要使用AND或OR链接,同时空格替换为编码%20

9 sql查询

# curl -XPOST -H 'Content-Type: application/json' 'http://$es_server:9200/_xpack/sql?format=txt' -d '{"query":"select * from testdoc"}'
name
----------------
test hello again

四 Setting相关

1 查看一个索引的setting

# curl -XGET 'http://localhost:9200/testdoc/_settings'

2 查看全部setting

# curl -XGET 'http://localhost:9200/_all/_settings'

五 Mapping相关

Mapping(索引结构定义)相似于表结构定义,定义全部的字段、数据类型、是否存储、是否索引、analyzer等;

Mapping is the process of defining how a document, and the fields it contains, are stored and indexed. For instance, use mappings to define:

  • which string fields should be treated as full text fields.
  • which fields contain numbers, dates, or geolocations.
  • whether the values of all fields in the document should be indexed into the catch-all _all field.
  • the format of date values.
  • custom rules to control the mapping for dynamically added fields.

1 查看单个索引的mapping

# curl http://localhost:9200/testdoc/_mapping/testtype
{"testdoc":{"mappings":{"testtype":{"properties":{"name":{"type":"text","fields":{"keyword":{"type":"keyword","ignore_above":256}}}}}}}}

2 查看全部的索引的mapping

# curl http://localhost:9200/_mapping
# curl http://localhost:9200/_all/_mapping

3 在已有mapping上添加字段

# curl -XPOST -H 'Content-Type: application/json' http://localhost:9200/testdoc/_mapping/testtype -d '
{
  "properties": {
    "email": {
      "type": "keyword"
    }
  }
}'

4 设置mapping

# curl -XPOST -H 'Content-Type: application/json' http://localhost:9200/testdoc -d '
{
  "mappings": {
    "testtype": { 
      "properties": { 
        "title":    { "type": "text", "analyzer": "standard"}, 
        "name":     { "type": "text"  }, 
        "age":      { "type": "integer" },  
        "created":  {
          "type":   "date", 
          "format": "strict_date_optional_time||epoch_millis"
        }
      }
    }
  }
}'

 

5 更新mapping

mapping没法更新,只能使用新的mapping建立新的索引,而后重建索引来间接实现mapping更新;

Other than where documented, existing field mappings cannot be updated. Changing the mapping would mean invalidating already indexed documents. Instead, you should create a new index with the correct mappings and reindex your data into that index. If you only wish to rename a field and not change its mappings, it may make sense to introduce an alias field.

参考:https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

六 Analyzer相关

Analysis is the process of converting text, like the body of any email, into tokens or terms which are added to the inverted index for searching. Analysis is performed by an analyzer which can be either a built-in analyzer or a custom analyzer defined per index.

analyzer在mapping中配置,好比

"title": { "type": "text", "analyzer": "standard"}, \

测试analyzer

# curl -XPOST -H 'Content-Type: application/json' http://localhost:9200/_analyze?pretty -d '{"tokenizer":"standard","filter":  [ "lowercase", "asciifolding" ],"text":      "Is this chandler?"}'
{
  "tokens" : [
    {
      "token" : "is",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "<ALPHANUM>",
      "position" : 0
    },
    {
      "token" : "this",
      "start_offset" : 3,
      "end_offset" : 7,
      "type" : "<ALPHANUM>",
      "position" : 1
    },
    {
      "token" : "chandler",
      "start_offset" : 8,
      "end_offset" : 16,
      "type" : "<ALPHANUM>",
      "position" : 2
    }
  ]
}
# curl -XPOST -H 'Content-Type: application/json' http://localhost:9200/_analyze?pretty -d '{"tokenizer":"standard","text":"联想是全球最大的笔记本厂商"}'
{
  "tokens" : [
    {
      "token" : "",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "<IDEOGRAPHIC>",
      "position" : 0
    },
    {
      "token" : "",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "<IDEOGRAPHIC>",
      "position" : 1
    },
    {
      "token" : "",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "<IDEOGRAPHIC>",
      "position" : 2
    },
    {
      "token" : "",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "<IDEOGRAPHIC>",
      "position" : 3
    },
    {
      "token" : "",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "<IDEOGRAPHIC>",
      "position" : 4
    },
    {
      "token" : "",
      "start_offset" : 5,
      "end_offset" : 6,
      "type" : "<IDEOGRAPHIC>",
      "position" : 5
    },
    {
      "token" : "",
      "start_offset" : 6,
      "end_offset" : 7,
      "type" : "<IDEOGRAPHIC>",
      "position" : 6
    },
    {
      "token" : "",
      "start_offset" : 7,
      "end_offset" : 8,
      "type" : "<IDEOGRAPHIC>",
      "position" : 7
    },
    {
      "token" : "",
      "start_offset" : 8,
      "end_offset" : 9,
      "type" : "<IDEOGRAPHIC>",
      "position" : 8
    },
    {
      "token" : "",
      "start_offset" : 9,
      "end_offset" : 10,
      "type" : "<IDEOGRAPHIC>",
      "position" : 9
    },
    {
      "token" : "",
      "start_offset" : 10,
      "end_offset" : 11,
      "type" : "<IDEOGRAPHIC>",
      "position" : 10
    },
    {
      "token" : "",
      "start_offset" : 11,
      "end_offset" : 12,
      "type" : "<IDEOGRAPHIC>",
      "position" : 11
    },
    {
      "token" : "",
      "start_offset" : 12,
      "end_offset" : 13,
      "type" : "<IDEOGRAPHIC>",
      "position" : 12
    }
  ]
}

 

中文分词smarkcn

$ bin/elasticsearch-plugin install analysis-smartcn

This plugin can be downloaded for offline install from https://artifacts.elastic.co/downloads/elasticsearch-plugins/analysis-smartcn/analysis-smartcn-6.6.2.zip.

The plugin provides the smartcn analyzer and smartcn_tokenizer tokenizer, which are not configurable.

 

分词效果:

# curl -XPOST -H 'Content-Type: application/json' http://localhost:9200/_analyze?pretty -d '{"tokenizer":"smartcn_tokenizer","text":"联想是全球最大的笔记本厂商"}'
{
  "tokens" : [
    {
      "token" : "联想",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "word",
      "position" : 1
    },
    {
      "token" : "全球",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "word",
      "position" : 2
    },
    {
      "token" : "",
      "start_offset" : 5,
      "end_offset" : 6,
      "type" : "word",
      "position" : 3
    },
    {
      "token" : "",
      "start_offset" : 6,
      "end_offset" : 7,
      "type" : "word",
      "position" : 4
    },
    {
      "token" : "",
      "start_offset" : 7,
      "end_offset" : 8,
      "type" : "word",
      "position" : 5
    },
    {
      "token" : "笔记本",
      "start_offset" : 8,
      "end_offset" : 11,
      "type" : "word",
      "position" : 6
    },
    {
      "token" : "厂商",
      "start_offset" : 11,
      "end_offset" : 13,
      "type" : "word",
      "position" : 7
    }
  ]
}

参考:https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis-smartcn.html

中文分词ik

$ bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.6.2/elasticsearch-analysis-ik-6.6.2.zip

The IK Analysis plugin integrates Lucene IK analyzer (http://code.google.com/p/ik-analyzer/) into elasticsearch, support customized dictionary.
Analyzer: ik_smart , ik_max_word , Tokenizer: ik_smart , ik_max_word

 

分词效果:

ik_smark

# curl -XPOST -H 'Content-Type: application/json' http://localhost:9200/_analyze?pretty -d '{"tokenizer":"ik_smart","text":"联想是全球最大的笔记本厂商"}'         
{
  "tokens" : [
    {
      "token" : "联想",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "全球",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "最大",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "",
      "start_offset" : 7,
      "end_offset" : 8,
      "type" : "CN_CHAR",
      "position" : 4
    },
    {
      "token" : "笔记本",
      "start_offset" : 8,
      "end_offset" : 11,
      "type" : "CN_WORD",
      "position" : 5
    },
    {
      "token" : "厂商",
      "start_offset" : 11,
      "end_offset" : 13,
      "type" : "CN_WORD",
      "position" : 6
    }
  ]
}

ik_max_word

# curl -XPOST -H 'Content-Type: application/json' http://localhost:9200/_analyze?pretty -d '{"tokenizer":"ik_max_word","text":"联想是全球最大的笔记本厂商"}'
{
  "tokens" : [
    {
      "token" : "联想",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "全球",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "最大",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "",
      "start_offset" : 7,
      "end_offset" : 8,
      "type" : "CN_CHAR",
      "position" : 4
    },
    {
      "token" : "笔记本",
      "start_offset" : 8,
      "end_offset" : 11,
      "type" : "CN_WORD",
      "position" : 5
    },
    {
      "token" : "笔记",
      "start_offset" : 8,
      "end_offset" : 10,
      "type" : "CN_WORD",
      "position" : 6
    },
    {
      "token" : "本厂",
      "start_offset" : 10,
      "end_offset" : 12,
      "type" : "CN_WORD",
      "position" : 7
    },
    {
      "token" : "厂商",
      "start_offset" : 11,
      "end_offset" : 13,
      "type" : "CN_WORD",
      "position" : 8
    }
  ]
}

参考:https://github.com/medcl/elasticsearch-analysis-ik

七 复杂查询

1 查询接口主要参数

q
The query string.

stored_fields
The selective stored fields of the document to return for each hit, comma delimited. Not specifying any value will cause no fields to return.

sort
Sorting to perform. Can either be in the form of fieldName, or fieldName:asc/fieldName:desc. The fieldName can either be an actual field within the document, or the special _score name to indicate sorting based on scores. There can be several sort parameters (order is important).

from
The starting from index of the hits to return. Defaults to 0.

size
The number of hits to return. Defaults to 10.

timeout
A search timeout, bounding the search request to be executed within the specified time value and bail with the hits accumulated up to that point when expired. Defaults to no timeout.

default_operator
The default operator to be used, can be AND or OR. Defaults to OR.

其中sort有不少种实现,好比 _geo_distance 能够用来实现地理位置远近排序,另外还能够经过filter来实现地理位置圈定,详见:https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-geo-distance-query.html

相关文章
相关标签/搜索