算法是为求解一个问题须要遵循的、被清楚地指定的简单的指令的集合。对于一个问题,一旦给定某种算法而且肯定是正确的,那么重要的一步是肯定该算法将须要多少诸如时间和空间的问题,也就是要分析该算法的时间复杂度和空间复杂度,时间复杂度低和空间复杂度低就表明该算法是好的,但咱们要努力找到最优的算法。下面来看看最大子序列和问题的最优求解算法,用php实现了php
function maxSubSum($arr) { $maxSum = $sum = $leftIndex = $rightIndex = 0; $flag = false; foreach ($arr as $key=>$value) { $sum += $value; if ($sum > $maxSum) { $maxSum = $sum; if($flag) { $leftIndex = $key; $flag = false; } $rightIndex = $key; } if($sum <0) { $sum = 0; $maxSum = 0; $flag = true; } } return array_slice($arr,$leftIndex,($rightIndex - $leftIndex)+1); }
再来看看python实现python
#!/usr/bin/python def findMaxSubArray( inputList ): if ( len( inputList ) == 0 ): return inputList middle = len( inputList ) / 2 leftSum,rightSum,crossingSum,tmpSum = 0,0,0,0 leftIndex,rightIndex = 0,len(inputList) leftSum = sum(inputList[0:middle]) rightSum = sum(inputList[middle+1:]) tmpIndex = middle -1 while ( tmpIndex >0): tmpSum +=inputList[tmpIndex] if(tmpSum > leftSum): leftIndex = tmpIndex break; tmpIndex = tmpIndex - 1 tmpIndex = middle+1 while (tmpIndex < len( inputList )): tmpSum += inputList[tmpIndex] if( tmpSum > rightSum ): rightIndex = tmpIndex break; tmpIndex = tmpIndex + 1 return inputList[leftIndex:rightIndex] if __name__ == '__main__': inputList = [-1,-2,-4,-8,-3,-10,-13,-56,-33,-2,-4,-45,-55,-12,-3] #inputList = [1,2,-4,8,4,0,-10,3,56,33,2,4,-45,55,0,-12,3] print findMaxSubArray ( inputList )
最后我想请教一个问题,为何求余运算耗费很大,知道原理的请解答一下。算法