三对角线性方程组,对于熟悉数值分析的同窗来讲,并不陌生,它常常出如今微分方程的数值求解和三次样条函数的插值问题中。三对角线性方程组可描述为如下方程组:
$$a_{i}x_{i-1}+b_{i}x_{i}+c_{i}x_{i+1}=d_{i}$$
其中$1\leq i \leq n, a_{1}=0, c_{n}=0.$ 以上方程组写成矩阵形式为$Ax=d$,即:html
$$ {\begin{bmatrix} {b_{1}}&{c_{1}}&{}&{}&{0}\\ {a_{2}}&{b_{2}}&{c_{2}}&{}&{}\\ {}&{a_{3}}&{b_{3}}&\ddots &{}\\ {}&{}&\ddots &\ddots &{c_{n-1}}\\ {0}&&&{a_{n}}&{b_{n}}\\ \end{bmatrix}} {\begin{bmatrix}{x_{1}}\\{x_{2}}\\{x_{3}}\\\vdots \\{x_{n}}\\\end{bmatrix}}={\begin{bmatrix}{d_{1}}\\{d_{2}}\\{d_{3}}\\\vdots \\{d_{n}}\\\end{bmatrix}} $$git
三对角线性方程组的求解采用追赶法或者Thomas算法,它是Gauss消去法在三对角线性方程组这种特殊情形下的应用,所以,主要思想仍是Gauss消去法,只是会更加简单些。咱们将在下面的算法详述中给出该算法的具体求解过程。
固然,该算法并不老是稳定的,但当系数矩阵$A$为严格对角占优矩阵(Strictly D iagonally Dominant, SDD)或对称正定矩阵(Symmetric Positive Definite, SPD)时,该算法稳定。对于不熟悉SDD或者SPD的读者,也没必要担忧,咱们还会在咱们的博客中介绍这类矩阵。如今,咱们只要记住,该算法对于部分系数矩阵$A$是能够求解的。github
追赶法或者Thomas算法的具体步骤以下:算法
1.建立新系数$c_{i}^{*}$和$d_{i}^{*}$来代替原先的$a_{i},b_{i},c_{i}$,公式以下:函数
$$ c^{*}_i = \left\{ \begin{array}{lr} \frac{c_1}{b_1} & ; i = 1\\ \frac{c_i}{b_i - a_i c^{*}_{i-1}} & ; i = 2,3,...,n-1 \end{array} \right.\\ d^{*}_i = \left\{ \begin{array}{lr} \frac{d_1}{b_1} & ; i = 1\\ \frac{d_i- a_i d^{*}_{i-1}}{b_i - a_i c^{*}_{i-1}} & ; i = 2,3,...,n-1 \end{array} \right. $$3d
2.改写原先的方程组$Ax=d$以下:code
$$ \begin{bmatrix} 1 & c^{*}_1 & 0 & 0 & ... & 0 \\ 0 & 1 & c^{*}_2 & 0 & ... & 0 \\ 0 & 0 & 1 & c^{*}_3 & 0 & 0 \\ . & . & & & & . \\ . & . & & & & . \\ . & . & & & & c^{*}_{n-1} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ .\\ .\\ .\\ x_k \\ \end{bmatrix} = \begin{bmatrix} d^{*}_1 \\ d^{*}_2 \\ d^{*}_3 \\ .\\ .\\ .\\ d^{*}_n \\ \end{bmatrix} $$htm
3.计算解向量$x$,以下:
$$ x_n = d^{*}_n, \qquad x_i = d^{*}_i - c^{*}_i x_{i+1}, \qquad i = n-1, n-2, ... ,2,1$$ip
以上算法获得的解向量$x$即为原方程$Ax=d$的解。
下面,咱们来证实该算法的正确性,只须要证实该算法保持原方程组的形式不变。
首先,当$i=1$时,
$$1*x_{1}+c_{1}^{*}x_{2}=d_{1}^{*} \Leftrightarrow 1*x_{1}+\frac{c_{1}}{b_{1}}x_{2}=\frac{d_{1}}{b_{1}}\Leftrightarrow b_{1}*x_{1}+c_{1}x_{2}=d_{1}$$
当$i>1$时,ci
$$ 1*x_{i}+c_{i}^{*}x_{i+1}=d_{i}^{*} \Leftrightarrow 1*x_{i}+\frac{c_{i}}{b_{i} - a_{i} c^{*}_{i-1}}x_{i+1}=\frac{d_{i}- a_{i} d^{*}_{i-1}}{b_{i} - a_{i} c^{*}_{i-1}} \Leftrightarrow (b_{i} - a_{i} c^{*}_{i-1})x_{i}+c_{i}x_{i+1}=d_{i}- a_{i} d^{*}_{i-1} $$
结合$a_{i}x_{i-1}+b_{i}x_{i}+c_{i}x_{i+1}=d_{i}$,只须要证实$x_{i-1}+c_{i-1}^{*}x_{i}=d_{i-1}^{*}$,而这已经在该算法的第(3)步的中的计算$x_{i-1}$中给出。证实完毕。
咱们将要求解的线性方程组以下:
$$ {\begin{bmatrix} 4&1&{0}&{0}&{0}\\ {1}&{4}&{1}&{0}&{0}\\ {0}&{1}&{4}&{1}&{0}\\ {0}&{0}&{1}&{4}&{1}\\ {0}&{0}&{0}&{1}&{4}\\ \end{bmatrix}} {\begin{bmatrix}{x_{1}}\\{x_{2}}\\{x_{3}}\\{x_{4}} \\{x_{5}}\\\end{bmatrix}}={\begin{bmatrix}{1\\0.5\\ -1\\3\\2}\\\end{bmatrix}} $$
接下来,咱们将用Python来实现该算法,函数为TDMA,输入参数为列表a,b,c,d, 输出为解向量x,代码以下:
# use Thomas Method to solve tridiagonal linear equation # algorithm reference: https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm import numpy as np # parameter: a,b,c,d are list-like of same length # tridiagonal linear equation: Ax=d # b: main diagonal of matrix A # a: main diagonal below of matrix A # c: main diagonal upper of matrix A # d: Ax=d # return: x(type=list), the solution of Ax=d def TDMA(a,b,c,d): try: n = len(d) # order of tridiagonal square matrix # use a,b,c to create matrix A, which is not necessary in the algorithm A = np.array([[0]*n]*n, dtype='float64') for i in range(n): A[i,i] = b[i] if i > 0: A[i, i-1] = a[i] if i < n-1: A[i, i+1] = c[i] # new list of modified coefficients c_1 = [0]*n d_1 = [0]*n for i in range(n): if not i: c_1[i] = c[i]/b[i] d_1[i] = d[i] / b[i] else: c_1[i] = c[i]/(b[i]-c_1[i-1]*a[i]) d_1[i] = (d[i]-d_1[i-1]*a[i])/(b[i]-c_1[i-1] * a[i]) # x: solution of Ax=d x = [0]*n for i in range(n-1, -1, -1): if i == n-1: x[i] = d_1[i] else: x[i] = d_1[i]-c_1[i]*x[i+1] x = [round(_, 4) for _ in x] return x except Exception as e: return e def main(): a = [0, 1, 1, 1, 1] b = [4, 4, 4, 4, 4] c = [1, 1, 1, 1, 0] d = [1, 0.5, -1, 3, 2] ''' a = [0, 2, 1, 3] b = [1, 1, 2, 1] c = [2, 3, 0.5, 0] d = [2, -1, 1, 3] ''' x = TDMA(a, b, c, d) print('The solution is %s'%x) main()
运行该程序,输出结果为:
The solution is [0.2, 0.2, -0.5, 0.8, 0.3]
本算法的Github地址为: https://github.com/percent4/N... .
最后再次声明,追赶法或者Thomas算法并非对全部的三对角矩阵都是有效的,只是部分三对角矩阵可行。