阿里数据库的极致弹性之路

阿里妹导读:数据库从IOE(IBM小机、Oracle商业DB、EMC存储)一路走来,你们都知道数据库是资源重依赖的软件,对服务器的三大件CPU、内存、磁盘几乎都有要求。数据库做为普遍使用的数据存储系统,其SQL请求背后涉及的物理读、逻辑读、排序过滤等消耗了IO和CPU资源,业务SQL不一样,执行计划不一样,资源消耗就不一样,于是不一样业务对资源规格的需求也不同。正因如此,咱们更须要抽象规格,更好地让不一样资源诉求的数据库实例混跑在相同的物理机上,提高总体利用率。今天,阿里资深技术专家天羽为咱们讲述阿里数据库的极致弹性之路。数据库

除了平常业务需求,阿里的双11场景,让咱们持续思考如何低成本高效率地支持峰值流量,把这些思考变成现实,变成技术竞争力。在大促资源弹性上有这么几个思路:后端

  • 使用公共云标准资源弹性,直接用阿里云的标准资源支撑大促后归还。这个是最直接的想法,但这里的难度是业务需求和云资源在性能、成本上的差距,不要定制化机器。
  • 混部能力,存量业务的分类混部、分时混部。使用离线资源支撑大促,既是分类混部,双11零点离线降级,高峰后在线归还资源也是分时复用。
  • 快上快下,在有能力使用云、离线资源后,尽可能缩短占用周期。
  • 碎片化资源,数据库一直是块石头,是一个大块完整的规格。若是把数据库本身的大库变成小库,就可使用其余业务的碎片化资源,包括公共云上的资源。

大促的成本=持有资源X持有周期,更通用的资源(云)、更快的部署(容器化)是缩短持有周期的关键,如何更少地使用资源(使用离线或只扩计算资源),就依赖存储计算分离架构的实施。沿着极致弹性的目标,数据库经历了混合云弹性、容器化弹性、计算存储分离弹性三个阶段,基础架构从高性能ECS混合云、容器化混合云、存储计算分离的公共云和离线混部一步步升级。安全

基本上架构演进就是每一年验证一个单元,第二年全网铺开,每一年挖个坑而后和团队一块儿努力爬出来,每次演进须要跨团队背靠背紧密合做,快速拿下目标,这也是阿里最神奇的力量。借助于底层软硬件技术发展,一步步的架构升级使得弹性混部愈来愈灵活和快速。 服务器

1、混合云弹性,高性能ECS应运而生

2015年以前,咱们的大促弹性叫人肉弹性,也就是大促要搬机器,好比集团用云的机型支撑大促,大促结束后搬机器归还给云。但就在2015年末的一次会议上,李津问可否把数据库跑到ECS上,若是能够,就真正帮助了云产品成熟,当时张瑞和我讨论了一下,在会议上就答复了:咱们决定试一下。这个合做很是契合会议主题“挑战不可能——集团技术云计算战区12月月会召集令”。网络

对于数据库跑在虚拟机上,咱们判断最大的消耗在IO和网络的虚拟化上,所以如何作到接近本机性能,怎么穿透虚拟化就是一个问题。网络的用户态技术DPDK已经比较成熟,但如何作到足够高的效率,是否offload到硬件来作计算是个问题。文件系统IO的用户态链路有个Intel的SPDK方案,Intel推出后各大厂商还在验证中,尚未规模的应用。咱们就在这个时候启动的这个项目,叫高性能ECS。经过和ECS团队紧密合做,最终咱们作到了最差场景高性能ECS相比本地盘性能损耗低于10%。架构

2016年在集团经过了平常验证,2017年大促开始大规模用云资源直接弹性。这个项目除了打造高性能ECS产品,更重要的是沉淀了网络和文件IO的纯用户态链路技术,这是一个技术拐点的产生,为阿里后续存储计算分离相关产品的高性能突破打下了基础。并发

2、容器化弹性,提高资源效率

随着单机服务器的能力提高,阿里数据库在2011年就开始使用单机多实例的方案,经过Cgroup和文件系统目录、端口的部署隔离,支持单机多实例,把单机资源利用起来。但依然存在以下问题:运维

  • 内存的OOM时有发生
  • 存在IO争抢问题
  • 多租户混部存在主机帐号等安全问题
  • 数据库主备机型一致性

随着单机部署密度愈来愈高,社区Docker也开始发展起来,尽管还不成熟,Docker自己依赖Cgroup作资源隔离,解决不了Cgroup的IO争抢或OOM问题,但它经过资源隔离和namespace隔离的结合,尝试对资源规格以及部署作新的定义,所以咱们看到了容器化更多的优点:分布式

  • 标准化规格,数据库与机型解耦,主备不须要对称。这对规模化运维带来极大的效率。
  • Namespace隔离带来混部能力,资源池统一。
  • 不一样数据库类型,不一样数据库版本随便混。
  • 让DB具有与其余应用类型混部的条件。

2015年数据库开始验证容器化技术,2016年在平常环境中大量使用。所以在集团统一调度的项目启动后,咱们就定下了2016年电商一个交易单元所有容器化支撑大促的目标,承载交易大盘约30%,并顺利完成。2017年数据库就是全网容器化的目标,目前数据库全网容器化比例已经接近100%。性能

容器化除了提高部署弹性效率,更重要的是透明底层资源差别,在没有启动智能调度(经过自动迁移提高利用率)前,仅仅从容器化带来的机器复用和多版本混部,就提高了10个点的利用率,资源池的统一和标准部署模板也加快了资源交付效率。容器化完成了底层各类资源的抽象,标准化了规格,而镜像部署带来了部署上的便利,基于数据库PaaS和统一调度层的通力合做,数据库的弹性变得更加快速灵活,哪里有资源,哪里就能跑起数据库。

 3、计算资源极致弹性,存储计算分离架构升级

实现了容器化混合云,是否是每一年大促使用高性能ECS,容器化部署就能够了呢?其实仍是有不足的:

  1. 数据库弹性须要搬数据,把数据搬到ECS上是很是耗时的工做。 
  2. 弹性规模太大,若是超过公有云售卖周期,会增长持有成本。

所以如何作到更快、更通用的弹性能力,是一个新的技术问题。随着2016年调度的发展,你们考虑机器是否是应该无盘化,是否是应该存储计算分离,从而加快调度效率,而数据库的存储计算分离更是争议很大。

数据库的Share Nothing分布式扩展已经深刻人心,存储计算分离会不会回到IOE状态?若是IDC是一个数据中心,应用就是计算,DB就是存储,DB本身再作存储计算分离有意义吗?数据是主备双副本的,存储计算分离后变成三副本,存储集群的容量池化能balance掉额外副本的成本吗?

为此我开始测算存储计算分离架构在大促场景下的投入产出,咱们来看下大促场景,弹性大促时,业务需求计算能力数倍甚至10倍以上扩容,承担大促峰值压力,而磁盘由于存储长期数据,峰值的数据量在总体占比不高,所以磁盘容量基本不须要扩容。

在之前本地磁盘跑主备的架构,没法计算、存储分开扩容,大促指标越高,添加标准机器越多,成本浪费越大,由于磁盘是标准数据库机器的主要成本。而存储计算分离的状况下,测算下来,咱们看到在较低平常压力下存储计算分离成本是比本地盘高的,但再往上,存储计算分离只须要增长计算,存储集群由于池化后,不仅容量池化了,性能也池化了,任何高负载实例的IO都是打散到整个集群分担的,磁盘吞吐和IOPS复用,不需扩性能,成本优点很是明显。

磁盘不扩容,只扩计算天然成本低不少。传统的思考是存储集群容量池化的优点,但在大促场景咱们更多用到的是性能的池化,突破单机瓶颈,所以咱们提出了电商异地多活全部单元存储计算分离,其他业务继续使用本地磁盘进行同城容灾的目标架构。

提出这个设想,而这个架构的可行性如何判断?基于一些数字就能够推断,你们知道SSD磁盘的读写响应时间在100-200微秒,而16k的网络传输在10微秒内,所以尽管存储计算分离增长两到三次的网络交互,加上存储软件自己的消耗,总体有机会作到读写延时在 500微秒的范围内。在数据库实例压测中咱们发现,随着并发增长,存储集群具有更大的QPS水位上线,这印证了性能池化突破单机瓶颈带来的吞吐提高。

数据库团队在2017年开始验证存储计算分离,基于25G的TCP网络实现存储计算分离部署,当年就承担了10%大促流量。咱们基于分布式存储作到了700微秒的响应时间,这里内核态和软件栈的消耗较大,为此X-DB也针对性地作了慢IO优化,特别是日志刷盘的优化,开启原子写去掉了double write buffer提高吞吐能力。

这个过程当中,咱们沉淀了存储的资源调度系统,目前已经做为统一调度的组件服务集团业务。咱们对当前架构性能不太满意,有了X-DB的慢IO优化、存储计算分离跨网络的IO路径、存储资源调度等技术沉淀,加上阿里巴巴RDMA网络架构的发展,2017下半年数据库开始和盘古团队一块儿,作端到端全用户态的存储计算分离方案。

4、全用户态IO链路的存储计算分离架构落地 

从数据库软件X-DB的IO调用开始,就走咱们本身研发的用户态文件系统DBFS,DBFS使用盘古的用户态客户端,直接经过RDMA网络访问后端盘古分布式文件系统,整个IO链路彻底绕过了内核栈。这里DBFS绕过了内核文件系统,天然也绕过了pagecache,为此DBFS针对数据库场景,实现了更简洁高效的BufferIO机制。

由于IO都是跨网络远程访问,所以RDMA起到了重要做用,如下是RDMA与TCP网络在不一样包大小下的延时对比,除了延时优点外,RDMA对长尾IO的tail latency可以有效控制,对一个数据库请求涉及屡次IO来讲,对用户请求的响应时间可以更有效保证。RDMA技术的应用是DB大规模存储计算分离的前提条件,经过咱们的数据实测,DBFS+RDMA链路的延时已经和Ext4+本地盘达到相同水平。

今年咱们首次大规模部署RDMA,如履薄冰。通过屡次压测、演练, RDMA配套监控和运维体系建设已经完善起来,咱们可以在1分钟内识别服务器网卡或交换机的网络端口故障触发告警,可以故障快速隔离,支持业务流量快速切走,支持集群或单机的网络RDMA向TCP降级切换等等。在咱们的切流演练中,从DBFS看到RDMA链路的写延时比TCP下降了一倍。咱们在全链路压测中,基于RDMA技术保障了在单个数据库实例接近2GB吞吐下磁盘响应时间稳定在500微秒左右,没有毛刺。

盘古分布式存储为了同时支持RDMA、EC压缩、快照等功能,作了大量的设计优化,尤为对写IO作了大量优化,固然也包括RDMA/TCP切流,故障隔离等稳定性方面的工做。做为阿里的存储底盘,其在线服务规模已经很是庞大。

整个技术链路讲清楚以后,说一下咱们在规模应用中遇到的难题,首先,容器的网络虚拟化Bridge和RDMA自然不兼容,因为容器走Bridge网络模式分配IP,而这个是走内核的。为了应用RDMA,咱们必须使用Host网络模式进行容器化,走Host + X-DB + DBFS + RDMA +盘古存储这样的全用户态链路。

其次,对于公有云环境,咱们经过VPC打通造成混合云环境,所以应用经过VPC访问数据库,而数据库使用物理IP用于RDMA访问盘古以及X-DB内部X-Paxos。这个方案复杂而有效,得益于DBPaaS管控的快速迭代和容器化资源调度的灵活性,这些新技术可以快速落地,在变化中稳步推动。

今年年初,咱们定下了2018大促的支撑形态,即异地多活的中心机房将计算弹性到大数据的离线资源,单元机房将计算弹性到公共云资源,不搬数据直接弹性扩容,快上快下的大促目标。今年DB全局一盘棋,完成了资源调整,实现了电商各站点的存储计算分离架构升级,并经过X-DB异地多副本架构灵活部署,实现了弹性大促目标。

基于底层盘古分布式的共享存储,弹性不须要迁移数据,只须要挂载磁盘,数据库能够像应用同样快速弹性,作到一个集群10分钟完成弹性扩容。同时在全链路压测过程当中,对出现性能瓶颈的业务,咱们能够边压边弹,快速弹到更大的规格上。基于快速弹性的能力,今年DB全部站点的大促扩容都在三天内完成,这在之前是不可能实现的,这就是存计分离的架构带来的效率。

最后,感谢阿里内部通力合做的盘古、网络、调度、IDC等团队,正是你们的支持让阿里数据库的基础架构才能不断升级,不断提高效率和成本的竞争力。

数据库存储计算分离的架构升级,大大节约了大促资源成本。目前咱们的弹性能力正在平常化,经过数据预测,自动触发弹性扩容,咱们的目标是让单机容量问题致使故障成为历史。 

接下来咱们平台将向智能化发展,对于数据库来讲,只有基础架构足够强大,足够快速,灵活,弹性,智能化才能有效发挥。



本文做者:天羽

阅读原文

本文来自云栖社区合做伙伴“阿里技术”,如需转载请联系原做者。

相关文章
相关标签/搜索