es7 学习

如下分为 索引文档(insert) 和 查询文档(select)segmentfault

1 一个index只有一个typeapp

索引文档时,使用  _doc来代替typeui

PUT /megacorp/_doc/3 { "first_name" :  "Douglas", "last_name" :   "Fir", "age" :         35, "about":        "I like to build cabinets", "interests":  [ "forestry" ] }

查询某一条文档this

GET /megacorp/_doc/3

查询姓smith的spa

GET /megacorp/_search?q=last_name:Smith

2 查询姓smith的,并大于30岁的 DSL  1使用  a  and b   2查询a,过滤b.net

POST /megacorp/_search { "query": { "bool": { "must": [ { "match": { "last_name": "Smith" } }, { "range": { "age": { "gt": 30 } } } ] } } }
POST /megacorp/_search { "query": { "bool": { "must": [ { "match": { "last_name": "Smith" } } ], "filter": { "range": { "age": { "gt": 30 } } } } } }

3短语搜索, 包含关键字的所有分词rest

https://blog.csdn.net/sinat_29581293/article/details/81486761code

GET /megacorp/_search { "query" : { "match_phrase": { "about" : "rock climbing" } } }

4查看关键字分词  standard标准分词汉字分为每一个字,英文分为每一个单词     ,ik分词 有 ik_smart 和ik_max_wordblog

GET /megacorp/_analyze { "text": ["康师傅","rock climbing"], "analyzer": "standard" }
{
  "tokens" : [
    {
      "token" : "康",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "<IDEOGRAPHIC>",
      "position" : 0
    },
    {
      "token" : "师",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "<IDEOGRAPHIC>",
      "position" : 1
    },
    {
      "token" : "傅",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "<IDEOGRAPHIC>",
      "position" : 2
    },
    {
      "token" : "rock",
      "start_offset" : 4,
      "end_offset" : 8,
      "type" : "<ALPHANUM>",
      "position" : 103
    },
    {
      "token" : "climbing",
      "start_offset" : 9,
      "end_offset" : 17,
      "type" : "<ALPHANUM>",
      "position" : 104
    }
  ]
}

  5查看某个字段在索引文档时分词结果索引

GET /test/_analyze { "field": "t_name", "text": ["康师傅","rock climbing"], }

  6 查看文档字段 ,t_name字段在索引文档时使用ik_max_word分词,查询文档时使用ik_smart分词

https://segmentfault.com/a/1190000012553894?utm_source=tag-newest

http://localhost:9200/test/_mapping
t_name: {
type: "text",
similarity: "BM25",
fields: {
keyword: {
type: "keyword",
ignore_above: 256
}
},
analyzer: "ik_max_word",
search_analyzer: "ik_smart"
},
t_pyname: {
type: "text",
fields: {
keyword: {
type: "keyword",
ignore_above: 256
}
}
},

  7高亮关键字

GET /megacorp/_search { "query" : { "match_phrase": { "about" : "rock climbing" } }, "highlight": { "fields": { "about": {} } } }

8es的group_by,聚合 aggregations,进行分析统计

GET /megacorp/_search { "aggs": { "all_inter": { "terms": { "field": "interests.keyword" } } } }

9 聚合时报错,具体缘由是聚合须要大量的内存,聚合前,须要将相应的字段开启聚合,或者按上面的方式  使用 .keyword

Fielddata is disabled on text fields by default. Set fielddata=true on [interests] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead
PUT megacorp/_mapping { "properties": { "interests": { "type":     "text", "fielddata": true } } }

10聚合时间长,聚合慢, 使用"execution_hint": "map"

https://blog.csdn.net/laoyang360/article/details/79253294

GET /megacorp/_search
{
"query": { "match": { "last_name": "smith" } }, "aggs": { "all_inter": { "terms": { "field": "interests",
     "execution_hint": "map"
} } } }

11查询文档,一个字段多个关键字(同一个字段查询多个搜索词)    interests字段包含music的或者包含sports的,or

GET /megacorp/_search { "query": { "terms": { "interests": [ "music", "sports" ] } } }

12查询文档,同一个字段包含多个关键字     interests字段包含music的包含sports的,and

GET /megacorp/_search { "query": { "bool": { "must": [ { "term": { "interests": { "value": "music" } } } , { "term": { "interests": { "value": "sports" } } } ] } } }

 

12查询文档,一个关键字多个字段(同一个搜索词查询多个字段)

http://www.javashuo.com/article/p-hzrevgrk-gc.html

GET /megacorp/_search { "query": { "multi_match": { "query": "Smith", "fields": ["last_name","first_name"] } } }

13聚合分级汇总,聚合后的每一组数据进行统计,aggs后再aggs

GET /megacorp/_search { "size":0, "aggs": { "all_inter": { "terms": { "field": "interests", "execution_hint": "map" }, "aggs": { "avg_age": { "avg": { "field": "age" } } } } } }

14  多字段查询, 如一个关键字查询同音字,同义字,形近字,等

https://blog.csdn.net/questiontoomuch/article/details/48493991

同音字能够增长一个字段,如  t_pyname   是t_name的pinyin

同义字增长一个字段, t_shinglesname

  • 使用一个词干提取器来将jumps,jumping和jumped索引成它们的词根:jump。而后当用户搜索的是jumped时,咱们仍然可以匹配含有jumping的文档。
  • 包含同义词,好比jump,leap和hop。
  • 移除变音符号或者声调符号:好比,ésta,está和esta都会以esta被索引。
相关文章
相关标签/搜索