2、CAS原理
CAS有3个操做数,内存值V,旧的预期值A,要修改的新值B。当且仅当预期值A和内存值V相同时,将内存值V修改成B,不然什么都不作。
CAS采用的是一种非阻塞算法(nonblocking algorithms),一个线程的失败或者挂起不该该影响其余线程的失败或挂起的算法。
CAS经过调用JNI的代码实现Java的非阻塞算法。其它原子操做都是利用相似的特性完成的。JNI:Java Native Interface为JAVA本地调用,容许java调用其余语言。
拿AtomicInteger来举例,
private volatile int value;
1.它有个volatile的成员变量 value,经过volatile关键字来保证多线程间数据的可见性的。
因此在没有锁的机制下可能须要借助volatile原语,保证线程间的数据是可见的(共享的)。这样才获取变量的值的时候才能直接读取。
public final int get() {
return value;
}
2.经过CAS操做来实现+1操做的,下面compareAndSet()方法就是
public final int incrementAndGet() {
for (;;) {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return next;
}
}
而compareAndSet利用JNI来完成CPU指令的操做。
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
而compareAndSwapInt就是借助C来调用CPU底层指令实现的。
intel x86处理器的源代码的片断:
// Adding a lock prefix to an instruction on MP machine
// VC++ doesn't like the lock prefix to be on a single line
// so we can't insert a label after the lock prefix.
// By emitting a lock prefix, we can define a label after it.
#define LOCK_IF_MP(mp) __asm cmp mp, 0 \
__asm je L0 \
__asm _emit 0xF0 \
__asm L0:
inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {
// alternative for InterlockedCompareExchange
int mp = os::is_MP();
__asm {
mov edx, dest
mov ecx, exchange_value
mov eax, compare_value
LOCK_IF_MP(mp)
cmpxchg dword ptr [edx], ecx
}
}
根据CPU处理器源代码所示,程序会根据当前处理器的类型来决定是否为cmpxchg指令添加lock前缀。若是程序是在多处理器上运行,就为cmpxchg指令加上lock前缀(lock cmpxchg)。反之,若是程序是在单处理器上运行,就省略lock前缀(单处理器自身会维护单处理器内的顺序一致性,不须要lock前缀提供的内存屏障效果)。
3、关于CPU的锁有以下3种:
1 处理器自动保证基本内存操做的原子性
首先处理器会自动保证基本的内存操做的原子性。处理器保证从系统内存当中读取或者写入一个字节是原子的,意思是当一个处理器读取一个字节时,其余处理器不能访问这个字节的内存地址。奔腾6和最新的处理器能自动保证单处理器对同一个缓存行里进行16/32/64位的操做是原子的,可是复杂的内存操做处理器不能自动保证其原子性,好比跨总线宽度,跨多个缓存行,跨页表的访问。可是处理器提供总线锁定和缓存锁定两个机制来保证复杂内存操做的原子性。
2 使用总线锁保证原子性
第一个机制是经过总线锁保证原子性。若是多个处理器同时对共享变量进行读改写(i++就是经典的读改写操做)操做,那么共享变量就会被多个处理器同时进行操做,这样读改写操做就不是原子的,操做完以后共享变量的值会和指望的不一致,举个例子:若是i=1,咱们进行两次i++操做,咱们指望的结果是3,可是有可能结果是2。
要保证读改写共享变量的操做是原子的,就必须保证CPU1读改写共享变量的时候,CPU2不能操做缓存了该共享变量内存地址的缓存。
处理器使用总线锁就是来解决这个问题的。所谓总线锁就是使用处理器提供的一个LOCK#信号,当一个处理器在总线上输出此信号时,其余处理器的请求将被阻塞住,那么该处理器能够独占使用共享内存。
3 使用缓存锁保证原子性
第二个机制是经过缓存锁定保证原子性。在同一时刻咱们只需保证对某个内存地址的操做是原子性便可,但总线锁定把CPU和内存之间通讯锁住了,这使得锁按期间,其余处理器不能操做其余内存地址的数据,因此总线锁定的开销比较大,最近的处理器在某些场合下使用缓存锁定代替总线锁定来进行优化。
频繁使用的内存会缓存在处理器的L1,L2和L3高速缓存里,那么原子操做就能够直接在处理器内部缓存中进行,并不须要声明总线锁,在奔腾6和最近的处理器中可使用“缓存锁定”的方式来实现复杂的原子性。所谓“缓存锁定”就是若是缓存在处理器缓存行中内存区域在LOCK操做期间被锁定,当它执行锁操做回写内存时,处理器不在总线上声言LOCK#信号,而是修改内部的内存地址,并容许它的缓存一致性机制来保证操做的原子性,由于缓存一致性机制会阻止同时修改被两个以上处理器缓存的内存区域数据,当其余处理器回写已被锁定的缓存行的数据时会起缓存行无效,在例1中,当CPU1修改缓存行中的i时使用缓存锁定,那么CPU2就不能同时缓存了i的缓存行。
可是有两种状况下处理器不会使用缓存锁定。第一种状况是:当操做的数据不能被缓存在处理器内部,或操做的数据跨多个缓存行(cache line),则处理器会调用总线锁定。第二种状况是:有些处理器不支持缓存锁定。对于Inter486和奔腾处理器,就算锁定的内存区域在处理器的缓存行中也会调用总线锁定。